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1. Introduction

Gaugings of maximal supergravity theories have revealed intriguing insights into the struc-

ture of supergravity theories as well as into their higher dimensional origin and the possi-

ble symmetry structures underlying string and M-theory. The coupling of vector fields to

charges assigned to the elementary fields renders the gauge theories generically non-abelian

and — more general — in higher dimensions induces a deformation of the hierarchy of for-

merly abelian p-form tensor gauge transformations. The most systematic approach for a

classification and construction of gauged supergravities resorts to exploiting the duality

symmetry underlying the ungauged theories. Their possible deformations are described in

terms of a constant tensor Θ encoding the embedding of the gauge group into the duality

group G of the ungauged theory [1 – 3]. Transforming in a certain representation of the

duality group, this tensor parametrizes the possible gaugings in a manifestly covariant way.

In particular, consistency of the theory can then be encoded in a number of representation

constraints on Θ. The action of the gauged supergravities can be entirely parametrized by
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the embedding tensor; in particular, the scalar potential that arises upon gauging is given

by a covariant expression bilinear in Θ dressed with the scalar fields.

From a higher-dimensional perspective a large part of the gaugings constructed in a

given dimension finds a natural interpretation as the effective theories arising from compact-

ification on curved manifolds, and/or in the presence of (geometrical and non-geometrical)

fluxes (see, e.g. [4 – 6]). The various geometrical and flux-parameters may be associated

with the different components of the tensor Θ. Vice versa, decomposing Θ under suitable

subgroups of G allows to identify by merely group-theoretical methods the effective the-

ories descending from particular compactifications. The covariant formulation of gauged

supergravities furthermore allows to directly identify the transformation of the various flux

parameters under the action of the duality group.

For the set of antisymmetric p-form tensor fields, the covariant construction of the

gaugings induces a deformation of the hierarchy of formerly abelian gauge transformations.

In particular, it gives rise to a Stückelberg-type coupling that shifts the p-forms with

the gauge parameter of the (p+1)-forms. The tensor required for such a coupling that

intertwines between p-forms and (p+1)-forms is proportional to the embedding tensor Θ.

As a consequence, the gauging non-trivially entangles the tensor gauge transformations

of forms of different degree. On the level of the Lagrangian, this entanglement has an

interesting consequence: while in the abelian theory all bosonic degrees of freedom are

carried by the metric and antisymmetric p-forms with p ≤ [D/2] − 1 (recall that in D

dimensions all higher-rank massless p-forms may be dualized down into massless (D−p−2)-

forms), the generic gauging in its covariant formulation also requires explicit couplings of

the [D/2]-forms in the action. Consistency requires that these additional forms arise with

no kinetic but only a topological term (proportional to the gauge coupling constant), such

that they do not introduce new propagating degrees of freedom. However, as a consequence,

gauge-fixing part of the tensor gauge freedom may shuffle some degrees of freedom from

the lower degree forms to the new forms, in particular render some of the latter massive.

It is the specific form of the embedding tensor together with the choice of gauge fixing

which encode the proper distribution of the degrees of freedom among the p-forms. This

fits nicely with the observations in explicit compactification scenarios where turning on

fluxes may induce massive [D/2]-forms, absent in the ungauged theory.

In even dimensions D = 2n, there is an additional subtlety related to the fact that the

duality group G of the ungauged theory is not realized off-shell but only on the combination

of equations of motion and Bianchi identities of the (n−1)-forms. More specifically, only

(the “electric”) half of the (n−1)-forms shows up in the Lagrangian while the other half

is defined as their on-shell (“magnetic”) duals. Only together they form an (irreducible)

representation of G. Upon gauging, both electric and magnetic (n−1)-forms enter the

Lagrangian; again the latter couple only with a topological term in order to preserve the

balance of degrees of freedom. Contrary to what one might expect at first glance, the con-

struction allows even for the gauging of subgroups of G that are not off-shell realized in the

ungauged theory. In other words, there is a well-defined Lagrangian even for such gaugings

whose gauge group is not among the global symmetries of the ungauged Lagrangian. The

existence of these gaugings is intimately related to the appearance of magnetic forms in
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the action. This construction has been worked out in 4 dimensions [7, 8] where the rele-

vant duality is electric/magnetic duality for vector fields and in 2 dimensions [9] where it

amounts to the scalar-scalar duality which is at the heart of the integrable structure of the

ungauged theory.

In this paper we consider the maximal D = 6 supergravity and its possible gaugings.

The ungauged maximal supergravity in six dimensions has been constructed in [10] and

possesses a global E5(5) = SO(5, 5) symmetry. Only a GL(5) subgroup is realized off-

shell with the 5 two-forms Bm transforming in its fundamental representation. Together

with their magnetic duals Bm in the 5′ they combine into the vector representation 10 of

SO(5, 5). Little is known about the gaugings of this theory. Cowdall [11] obtained an SO(5)

gauge theory from circle reduction of the SO(5) gauged maximal supergravity in 7D [12].

Alternatively, this theory describes the S4 reduction of the IIA theory and proves to be

relevant in a non-conformal extension of the AdS/CFT correspondence [13]. However, as it

has only the SL(5) symmetry inherited from 7D manifest, the 6D result is in an exceedingly

complicated form that does not shed much light onto the maximal duality symmetry. Here

we fill this gap by providing all possible gaugings by a direct construction in 6D. The

embedding tensor Θ which covariantly parametrizes the possible deformations transforms

in the 144c spinorial representation of SO(5, 5). The gauged Lagrangian features the full

set of 10 two-forms as well as a set of three-forms in the 16s which are on-shell dual to

the vector fields of the theory. We should stress that our formalism differs from other

approaches introducing p-form fields together with their duals in that the relevant first

order duality equations here arise as true equations of motion from the Lagrangian. This

appears only possible in the gauged theory.

The plan of this paper is the following. In section 2 we review the building blocks

of maximal D = 6 supergravity. In particular, we discuss the role of the SO(5, 5) dual-

ity group under which electric and magnetic two-forms undergo an orthogonal rotation

and their consistent coupling is provided by the formalism of Gaillard and Zumino [14].

We review in detail the structure of the scalar fields which parametrize the coset space

SO(5, 5)/(SO(5) × SO(5)). Finally, we give Tanii’s Lagrangian of the ungauged theory.

In section 3 we turn to the gauging of the theory. Applying the general framework, the

gauging is parametrized by the embedding tensor Θ transforming in the 144c of SO(5, 5).

We derive the quadratic constraints on this tensor whose solutions correspond to viable

gaugings of the six-dimensional theory and work out the deformed tensor hierarchy up

to and including the three-forms. We present the Lagrangian of maximal gauged D = 6

supergravity which for a general gauging carries the set of 10 electric and magnetic two-

forms BM = (Bm, B
m) of which the latter couple only with a topological term ΘC dB

to the set of three-forms CA in the 16s. Finally, we give a short overview and discussion

of various types of possible gaugings, i.e. solutions of the quadratic constraint and discuss

their possible higher-dimensional origin by dimensional reduction from seven and eleven

dimensions, respectively. Furthermore, we discuss the truncation to N = (1, 1) theories.

Our notations and conventions are given in appendix A, and some identities, useful in

deriving the topological Lagrangian and computing its variation, are given in appendix B.
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2. The Ingredients of the maximal D = 6 supergravity

2.1 The field content

The N = (2, 2) supersymmetric maximal supergravity in six dimensions has been con-

structed by Tanii [10]. It is an ungauged theory in which the couplings are governed,

along with supersymmetry, by the duality symmetry group SO(5, 5) that rotate the field

equations and Bianchi identities of the five 2-form potentials into each other. Only the

subgroup GL(5) ⊂ SO(5, 5) is a manifest off-shell symmetry of the theory. There is also a

manifest composite local symmetry SO(5) × SO(5).

The bosonic fields of the theory are the vielbein erµ, 2-form potentials Bµνm(m =

1, . . . , 5), vector fields AA
µ (A = 1, . . . , 16) and scalars V αα̇

A (α, α̇ = 1, . . . , 4) that parametrize

the coset SO(5, 5)/(SO(5)×SO(5)). The index A labels the 16 dimensional Majorana-Weyl

spinor of SO(5, 5), and the indices α, α̇ label the spinors of SO(5)×SO(5). The spinor fields

are the gravitini ψ+µα, ψ−µα̇ and χ+aα̇, χ−ȧα, where a, ȧ = 1, . . . , 5 are the SO(5)× SO(5)

vector indices, and ± refers to the spacetime chirality of the spinors which are symplectic-

Majorana-Weyl. (See appendix A for further notations and conventions). In summary, the

full supergravity multiplet consists of the fields:

(
erµ, Bµνm, A

A
µ , V

αα̇
A , ψ+µα, ψ−µα̇, χ+aα̇, χ−ȧα

)
. (2.1)

As we gauge this theory in the most general possible way, we will introduce the following

duals of the vector fields and the 2-form potentials:

( Bµν
m, CµνρA ) . (2.2)

Note that the vectors are in 16c and the 3-form potentials in 16s of the duality group

SO(5, 5). Electric and magnetic two-forms Bm and Bm transform in the 5 and 5′ of GL(5),

respectively, and combine into the 10 of SO(5, 5).

From E11, it has been predicted that one can extend the field content ofD = 6 maximal

gauged supergravity by the introduction of further 4, 5 and 6-forms [15, 16]:

(
C

(4)
MN , C

(5)
MA, C

(6)
MN,P , C

(6)
MNPQR+

)
, (2.3)

where CMN is antisymmetric, CMA is γ-traceless, CMN,P is mixed symmetric, CMNPQR+

is self-dual, and thus in 45, 144s, 320 + 10 and 126s dimensional representations of

SO(5, 5), respectively. The 4-form potentials have constraints on their curvatures such

that on-shell they describe 25 independent degrees of freedom corresponding to the Hodge

duals of the scalar fields in the coset SO(5, 5)/SO(5)×SO(5). We will see that the 5-forms

are in the same representation as the embedding tensor and that the quadratic constraints

of the embedding tensor precisely transform in the representations dual to the 6-forms

given in (2.3) [17 – 19]. These 5-forms and 6-forms can easily be included in the D = 6

Lagrangian, where the constant embedding tensor has been replaced by a scalar field, as

Lagrange multipliers giving rise to the constancy of the embedding tensor and the quadratic

constraints, respectively [17 – 19]. We will not explicitly perform this construction in this

paper. Recently, D = 5 maximal gauged supergravity has been constructed using the
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embedding tensor approach and its relation with an E11-extended spacetime has been

investigated [20]. It would be interesting to further study the proposed relationship for the

six-dimensional case studied in this paper.

2.2 Duality symmetry

To appreciate the duality symmetries in Tanii’s Lagrangian and also to set our notation,

we begin by reviewing the part of the Lagrangian involving the 2-form potential. Let us

define the field strengths

H(0)
m = dBm , G̃m

(0) = −3!e−1 ∂L
∂H

(0)
m

. (2.4)

The Hodge-dual of a 3-form ω is defined as ω̃µνρ = 1
3!eǫµνρσκλ ω

σκλ. The field equations

dGm
(0) = 0 and the Bianchi identities dH

(0)
m = 0 form a system invariant under linear

transformations, which are restricted to SO(5, 5) by the requirement that the equation for

Gm
(0) is covariant under these transformations. Infinitesimally, these transformations act as

δ

(
H

(0)
m

Gm
(0)

)
= u

(
H

(0)
m

Gm
(0)

)
, uT η + uη = 0 , η =

(
0 δn

m

δm
n 0

)
. (2.5)

Gaillard and Zumino have shown that the appropriate Lagrangian that achieves the duality

symmetry is given by [14]1

L = − 1

12
eH(0)

m G̃m
(0) −

1

12
e
[
H(0)

m Sm +G(0)mRm

]
+ Linv , (2.6)

where (Rm, S
m), which is a pair that transforms under SO(5, 5) as in (2.5), and Linv, which

is duality invariant, are built out of fields other than (H
(0)
m , Gm

(0)), and jGm
(0) is given by

jGm
(0) = Sm +Kmn(H(0)

n − jRn) . (2.7)

The operation j acting on a given 3-form ω is defined by

jω = ω̃ , j2 = +1 , ω̃µνρ =
1

3!
eǫµνρσκλ ω

σκλ , (2.8)

and the matrix Kmn to be built out of the scalar fields must be of the form

Kmn = Kmn
+ P+ +Kmn

− P− , (K+)T = K− , P± =
1

2
(1 ± j) , (2.9)

or equivalently

Kmn = Kmn
1 + jKmn

2 , KT
1 = K1 , KT

2 = −K2 . (2.10)

Under the infinitesimal SO(5, 5) duality transformations,

u =

(
x y

z t

)
, (2.11)

1For a very nice review, see [21].
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K must transforms as

δK = −Kx+ tK + zj −KyKj , (2.12)

as required by the covariance of the second equation in (2.4). For the 5 × 5 matrices K±

this gives

δK+ = −K+x+ tK+ + z −K+yK+ ,

δK− = −K−x+ tK− − z +K−yK− . (2.13)

Substituting (2.7) into the Lagrangian (2.6) gives

e−1L = − 1

12
(H(0)

m − jRm)Kmn(H(0)
n − jRn)− 1

6
(H(0)

m −jRm) · Sm− 1

12
jRm · Sm+e−1Linv .

(2.14)

2.3 Gauge symmetry

So far the construction is rather general, and as far as duality symmetry is concerned the

result above provides the answer. In the particular model we wish to study, however, we

need to consider the gauge symmetries and supersymmetry as well. To this end, we need

to introduce the Chern-Simons modified 3-form field strengths, and their duality invariant

Pauli couplings to fermionic bilinears. To achieve this, the pair (Rm, S
m) is chosen as

jRm = −ωm + Om , jSm = −ωm + Om , (2.15)

where the Chern-Simons forms are given by

ωm =
1√
2
F̄ ∧ γmA , ωm =

1√
2
F̄ ∧ γmA , (2.16)

and we have used the 16 × 16 chirally projected SO(5, 5) Dirac matrices γM = (γm, γ
m),

and (Om,Om) are bilinears in fermions, to be determined by supersymmetry, multiplied

by suitable functions of the scalar fields so that they transform as (Rm, S
m) under SO(5, 5)

transformations. Thus, the Lagrangian takes the form

e−1L = − 1

12
Hm ·KmnHn +

1

6
Hm · jωm − 1

12
ωm · jωm

+
1

6
Hm · (KmnOn − jOm) − 1

12
Om · (KmnOn − jOm)

+
1

12
(ωm · jOm + ωm · jOm) + e−1Linv , (2.17)

where

Hm = H(0)
m + ωm . (2.18)

Given the gauge transformations

δBm = − 1√
2
F̄ γmλ , δA = dλ , (2.19)

we see that all but the ωO terms are invariant, since

F̄ ∧ γMF ∧ F̄ γMλ = 0 , (2.20)
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which holds, thanks to the well known identity

γM(AB γ
M
C)D = 0 . (2.21)

As to the ωO terms, while they are not gauge invariant, they are nonetheless duality

invariant. Therefore, we can discard them by choosing Linv to contain these terms with

opposite sign. Then, we are left with

e−1L = − 1

12
Hm ·KmnHn +

1

6
Hm · jωm − 1

12
ωm · jωm

+
1

6
Hm · (KmnOn − jOm) − 1

12
Om · (KmnOn − jOm) + e−1L′

inv . (2.22)

The Lagrangian is then determined completely by specifying Kmn, the pair of 3-forms

(Om,Om) and L′
inv. Defining a following dual field strength, in analogy with (2.18),

Gm = Gm
(0) + ωm , (2.23)

it follows from (2.7) that

Gm = jKmnHn + O2 terms . (2.24)

In the supergravity model we shall study, O2 represents quartic fermion terms. Working

up to quartic fermion terms in the action, which we shall do in the rest of the paper, it

is convenient to define field strengths GM that transform as 10-plet of the duality group

SO(5, 5) as

GM =

(
Gm

Gm

)
=

(
Hm

jKmnHn

)
(2.25)

Using this definition, the Lagrangian (2.22) can be written as

e−1L = − 1

12
Hm ·KmnHn +

1

6
Hm · jωm − 1

12
ωm · jωm

+
1

6
jGM · OM + e−1L′

inv , (2.26)

where OM = (Om,Om) and we have dropped O2 terms that are quartic in fermions. With

O representing fermionic bilinears, the jG·O term describes already duality invariant Pauli

couplings.

Next, we discuss the matrix Kmn which is to be expressed in terms of the scalar fields,

following [10]. Here we shall choose a convenient basis for the scalar fields to make the

GL(5) ∈ SO(5, 5) symmetry manifest at the Lagrangian level. To this end, we introduce

the 10 × 10 matrix

VM
A =

(
Vm

a Vm
ȧ

Vma Vmȧ

)
≡
(
A B

C D

)
(2.27)

where a, ȧ are the vector indices of SO(5)×SO(5). Tanii has expressed his results in a basis

in which H
(0)
m ±Gm

(0) transform into each other under SO(5, 5) as components of 10-vector,

and used a matrix U that obeys the relation

UT ηdiagU = ηdiag , ηdiag = diag (1,−1) , (2.28)
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and therefore it is an SO(5, 5) representation. However, in this basis, the GL(5) symmetry

is not manifest. This can be remedied by working in a basis in which (H
(0)
m , Gm

(0) ) transform

as a vector under SO(5, 5). To achieve this, we work with the matrix V of (2.27) which is

related to the group element U as

V = MU , M =
1√
2

(
1 1

1 −1

)
. (2.29)

Since MT ηdiagM = η with η defined as in (2.5), the matrix V satisfies the relation

VT ηV = ηdiag , (2.30)

where η is as given in (2.5), and ηdiag explicitly by

ηAB =

(
δab 0

0 −δȧḃ

)
(2.31)

From (2.30), it also follows that

VMaVM
b = δab , VMȧVM

ḃ = −δȧḃ , VMaVM
ȧ = 0 ,

VM
aVNa − VM

ȧVNȧ = δN
M . (2.32)

It is important to note that in our conventions, the explicitly written (a, ȧ) indices are

always raised and lowered with +δab and +δ
ȧḃ

, starting from the basic object (2.27). This

explains the occurrence of minus signs in the formulae above where the form of ηAB has

been used.

Our choice of the scalar matrix V makes both the GL(5) acting from the left, and

SO(5) × SO(5) acting from the right manifest in the formalism. Note that, given V, the

group h = SO(5)I × SO(5)II acts from the right diagonally in the form h = diag (hI , hII).

The condition (2.30) translates into

ATC + CTA = 1 , BTD +DTB = −1 , ATD + CTB = 0 . (2.33)

With this parametrization, the matrix Kmn can be chosen as2

K = CA−1P+ −DB−1P− . (2.34)

Using (2.33), one finds that (CA−1)T = −DB−1. It can be easily checked that this K

indeed transforms under SO(5, 5) as in (2.12). Written in terms of V, we have

Kmn = Vma(Vn
a)−1P+ − Vmȧ(Vn

ȧ)−1P− , (2.35)

which gives the useful relations

Kmn
+ Vn

a = P+Vma , Kmn
− Vn

ȧ = −P−Vmȧ , (2.36)

with K± defined in (2.9).

2We are grateful to Yoshiaki Tanii for helpful discussions regarding this point.
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2.4 Supersymmetry

The choice for OM is dictated by supersymmetry. Tanii has found that the following choices

are appropriate [10]

OM =
1√
2

(
VM

aP−Oa + VM
ȧP+Oȧ

)
, (2.37)

with the exact form of the fermionic bilinears (Oa,Oȧ) determined by supersymmetry

(see next section). Moreover, the description of the supersymmetric transformation rules

requires the quantities Ha and H ȧ defined by

Hm =
√

2
(
Vm

aP+H
a − Vm

ȧP−H
ȧ
)
. (2.38)

Recalling (2.36) and (2.32), we find that3

P+Ha =
1√
2
P+GMVM

a , P−Hȧ = − 1√
2
P−GMVM

ȧ . (2.39)

Employing the relations (2.35) and (2.32) also shows that

P+GMVM
ȧ = 0 , P−GMVM

a = 0 . (2.40)

Using the quantities defined so far, the Lagrangian (2.26) can be written as

e−1L = − 1

12
Hm ·KmnHn +

1

6

(
P+H

a · Oa + P−H
ȧ · Oȧ

)

+
1

6
Hm · jωm − 1

12
ωm · jωm + e−1L′′

inv . (2.41)

In showing the cancelations of the terms proportional to ψµH
2 terms coming from the

variation of the metric in the H-kinetic terms, it is useful to note that

δLkin(H) = −1

4
eKmn

1

(
H+

µm ·H+
νn +H−

µm ·H−
νn

)
δgµν , (2.42)

where H± ≡ P±H, and we have used the identity

Kmn
1 H+

µmH
−
νn + (µ↔ ν) =

1

3
gµν K

mn
1 H+

m ·H−
n , (2.43)

where we have used Kmn
1 Va

mVb
n = 1

2δ
ab, which follows from (2.10), (2.33) and (2.34). We

are also using the notation Hµ · Hν ≡ HµρσHν
ρσ, and H+ · H− ≡ H+

µνρH
−µνρ. Finally,

upon using (2.38) and (2.32) one finds that

δLkin(H) = −1

4
e
(
H+a

µ ·H+a
ν +H−ȧ

µ ·H−ȧ
ν

)
δgµν . (2.44)

These terms are then canceled by terms arising from the variation of the Pauli couplings

in (2.41).

3The indices (a, ȧ) on H , O and V are raised and lowered by δab and δȧḃ.
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2.5 The scalars

The 25 scalar field of the theory parametrize the coset SO(5, 5)/(SO(5)×SO(5)) which can

conveniently be parametrized in terms of an SO(5, 5) valued 16× 16 matrix VA
αβ̇ , with its

inverse defined by

VA
αβ̇ V B

αβ̇
= δB

A , VA
αβ̇ V A

γδ̇
= δα

γ δ
β̇

δ̇
. (2.45)

The 10×10 scalar matrix V defined in (2.27) can be expressed in terms of the above 16×16

matrices V as4 (see appendix A for notations and conventions).

VM
a =

1

16
V̄ γMγaV , VM

ȧ = − 1

16
V̄ γMγ

ȧV . (2.46)

These relations follow from the fact that the SO(5, 5) γ-matrices (obeying Clifford algebra

with non-diagonal ηMN ) are left invariant by SO(5, 5) transformations realized in terms of

V and V. Noting that (see appendix A)

VM
AΓA =

(
0 VM

aγa + VM
ȧγȧ

VM
aγa − VM

ȧγȧ 0

)
, (2.47)

the invariance of the SO(5, 5) γ-matrices translates into the relations

VAαα̇(γM )ABV ββ̇
B = VM

a (γa)α
βδβ̇

α̇ + VM
ȧ(γȧ)α̇

β̇δβ
α ,

V A
αα̇(γM )ABV

Bββ̇ = VM
a (γa)α

βδβ̇
α̇ − VM

ȧ(γȧ)α̇
β̇δβ

α , (2.48)

from which (2.46) follows.

The scalar currents are defined as [10]

V A
αα̇ ∂µVA

ββ̇ =
1

4
Qab

µ (γab)α
βδβ̇

α̇ +
1

4
Qȧḃ

µ δβ
α(γȧḃ)α̇

β̇ +
1

4
P aȧ

µ (γa)α
β(γȧ)α̇

β̇ . (2.49)

It follows that

P aȧ
µ =

1

4
V̄ γaγȧ∂µV , Qab

µ =
1

8
V̄ γab∂µV , Qȧḃ

µ =
1

8
V̄ γȧḃ∂µV , (2.50)

and

DµV =
1

4
P aȧ

µ γaγȧV . (2.51)

Moreover, we have the standard integrability conditions

D[µP
aȧ
ν] = 0 , ∂[µQ

ab
ν] +Q[µ

acQν]
cb +

1

4
P aȧ

[µ Pν]
ȧb = 0 , (2.52)

and a similar equation for the curl ofQȧḃ
µ . The covariant derivatives in the above expressions

contain the composite connections. Other useful identities are:

DµVM
a =

1

2
P aȧ

µ VM
ȧ , DµVM

ȧ =
1

2
P aȧ

µ VM
a . (2.53)

It is also useful to introduce the matrix

MAB = VA
αβ̇VBαβ̇ , (2.54)

which will be used in the construction of kinetic term for the vector fields.

4Working with V related to SO(5, 5) matrices U through V = MU implies that the SO(5, 5) γ matrices

obey the Clifford algebra with off diagonal ηMN .
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2.6 The Lagrangian

Using the building blocks describe above, Tanii’s Lagrangian [10], can be written in our

notation and conventions (see appendix A) as follows:

L = LB + LF , (2.55)

where

e−1LB =
1

4
R− 1

12
Hm ·KmnHn − 1

4
MABF

A
µνF

µνB − 1

16
P aȧ

µ Pµ
aȧ

+
1

6
Hm · jωm − 1

12
ωm · jωm , (2.56)

and, up to quartic fermions,5

e−1LF = −1

2
ψ̄+µγ

µνρDνψ+ρ −
1

2
ψ̄−µγ

µνρDνψ−ρ −
1

2
χ̄aγµDµχ

a − 1

2
χ̄ȧγµDµχ

ȧ

+
1

4
P aȧ

µ Iµ
aȧ − 1

2
FA

µν J
µν
A +

1

6

(
P+H

a · Oa + P−H
ȧ · Oȧ

)
. (2.57)

The fermionic bilinears occurring in (2.57) have been determined by Tanii as follows

Iaȧ
µ = ψ̄νγ

µγνγaχȧ + ψ̄ν γ
µγνγȧχa ,

JµνA = ψ̄ργ
[ργµνγ

σ]VAψσ +
1

2
ψ̄ργµνγ

ργaVAχ
a

−1

2
χ̄ȧγργµνVAγ

ȧψρ +
1

2
χ̄ȧγµνγ

aVAγ
ȧχa ,

Oa
µνρ = 3ψ̄[µγνγ

aψρ] − 3ψ̄[µγνρ]χ
a − 1

4
χ̄ḃγµνργ

aχḃ . (2.58)

and Oȧ is obtained from Oa by interchanging dotted and undotted indices.

The Lagrangian (2.55) is invariant under the following supersymmetry transformations:

δeµ
r = ǭ+γ

rψ+µ + ǭ−γ
rψ−µ ,

δψµ+ = Dµǫ+ − 1

24
Ha

ρσκγ
aγρσκγµǫ+ +

1

8

(
γµ

νρ − 6δν
µγ

ρ
)
FA

νρVA ǫ− ,

δψµ− = Dµǫ− − 1

24
H ȧ

ρσκγ
ȧγρσκγµǫ− +

1

8

(
γµ

νρ − 6δν
µγ

ρ
)
FA

νρṼA ǫ+ ,

δχȧ =
1

4
Pµaȧγaγµǫ+

1

12
H ȧ

µνργ
µνρǫ+

1

8
FA

µνVAγ
ȧγµν ǫ ,

δχa =
1

4
P aȧ

µ γȧγµǫ+
1

12
Ha

µνργ
µνρǫ+

1

4
FA

µν ṼAγ
aγµν ǫ ,

δAA
µ = −ǭV Aψµ + ψ̄µV

Aǫ+
1

2
ǭγµγ

aV Aχa +
1

2
χ̄ȧV Aγȧγµǫ ,

∆Bµνm =
√

2Va
m

(
ψ̄[µγν]γ

aǫ+
1

2
χ̄aγµνǫ

)
−

√
2V ȧ

m

(
ψ̄[µγν]γ

ȧǫ+
1

2
χ̄ȧΓµνǫ

)
,

δVA =
1

2
(γaVAγȧ) (χ̄aγȧǫ+ χ̄ȧγaǫ) , (2.59)

5We have corrected the coefficient of the PµIµ term in [10].
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where ∆Bµν is the gauge covariant variation defined in appendix B,

Dµǫ = ∂µǫ+
1

4
ωµ

rsγrsǫ+
1

4
Qµ

abγabǫ , (2.60)

and “ ∼ ” denotes transposition. The chiralities are shown explicitly only when there is an

ambiguity. Otherwise, when suppressed, they can easily be deduced from the structure of

the terms (see appendix A for notation and conventions).

3. Gauging G0 ⊂ SO(5, 5)

Using the embedding tensor formalism [1 – 3], we will find the most general gauging of a

group G0 ⊂ SO(5, 5) by employing a suitable combination of the 16 vector fields in the

theory.

3.1 The embedding tensor

The key ingredient in the construction is the covariant derivative

Dµ = ∂µ − gAµ
A ΘA

MN tMN , (3.1)

with SO(5, 5) generators tMN = t[MN ] and an embedding tensor ΘA
MN . It follows from su-

persymmetry [2] that the latter can be parametrized in terms of a tensor θBM transforming

in the 144c representation, i.e. satisfying

γMAB θ
BM = 0 , (3.2)

as follows:

ΘA
MN = −θB[M γN ]

BA ≡
(
γ[MθN ]

)
A
. (3.3)

In this paper, we show that indeed every embedding tensor in the 144c (which also satisfies

the quadratic constraints (3.7) below) defines a consistent gauging, and present the full

Lagrangian.

The SO(5, 5) algebra is realized by generators tMN,K
L = 4ηK[Mδ

L
N ] in the vector rep-

resentation and tMN,A
B = (γMN )A

B on the spinor representation, respectively, satisfying

[ tKL, tMN ] = 4 (ηK[M tN ]L − ηL[M tN ]K) . (3.4)

Therefore, the gauge algebra generators XA = θA
MN tMN take the form

XAB
C = (γMθN )A(γMN )B

C , XA,M
N = 2(γMθN )A + 2(γNθM )A , (3.5)

acting on spinors and vectors, respectively. The quadratic constraints on the embedding

tensor state that

[XA,XB ] = −XAB
C XC . (3.6)

Some computation shows that this reduces to imposing

θAM θBN ηMN = 0 , θAM θB[N (γP ])AB = 0 , (3.7)
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on the tensor θAM . This means that the quadratic constraints transform in the 10 +

126c + 320 of SO(5, 5) — and thus in the representation conjugate to the 6-forms of the

theory (2.3). They ensure, for example, that

θAM XAB
C = 0 . (3.8)

The generators XAB
C satisfy

X(AB)
C = −θDM (γN )D(A (γMN )B)

C = − (γM )AB θ
CM ≡ dM,AB Z

C,M , (3.9)

where we have introduced the general notation

dM,AB ≡ (γM )AB , ZC,M ≡ −θCM . (3.10)

As we have discussed in the introduction, gauging the theory in general not only cor-

responds to covariantizing the derivatives according to (3.1) but also induces a nontrivial

deformation of the hierarchy of p-form tensor gauge transformations. In particular, p-forms

start to transform by (Stückelberg)-shift under the gauge transformations of the (p+1)-

forms. The corresponding tensors required to intertwine between the representations of p-

and (p+1)-forms are generated by the embedding tensor. The lowest intertwining tensors

can be obtained by evaluating the general formulas of [3] for our case, yielding

ZC,M ≡ −θCM

YM,A
N = −2 θBP (γQ)BA ηMP δ

N
Q + 2 θBP (γQ)BA ηMQ δ

N
P − 2 θBN (γM )BA

= −2 θBK ηMK (γN )AB , (3.11)

for the tensors intertwining between vectors/2-forms and 2-/3-forms, respectively. In

particular, the latter tensor encodes the representation content of 3-forms, required for

consistency of the deformed tensor gauge algebra. As the 3-forms (with the generic

index structure Cµνρ N
A) will always appear under projection YM,A

N Cµνρ N
A, the par-

ticular form of (3.11) shows that out of this general set only the 16 projected 3-forms

(γN )AB Cµνρ N
A ≡ Cµνρ B enter the theory. This is in accordance with the field content

discussed in the introduction, in particular with the fact that as a consequence of their

on-shell duality, 3-forms should transform in the representation conjugate to the vector

fields. With (3.11), the p-form tensor gauge algebra in six dimensions can now be written

down by evaluating the general formulas of [3] (see in particular [22], appendix A).

General p-form variations are most conveniently expressed in terms of the “covariant

variations”6

∆AA
µ ≡ δAµ

A , (3.12)

∆Bµν M ≡ δBµν M −
√

2 (γM )AB A[µ
A δAν]

B ,

∆Cµνρ A ≡ δCµνρ A − 3
√

2 (γM )AB B[µν M δAρ]
B − 2(γM )AB(γM )CD A[µ

BAν
C δAρ]

D .

6Note that B and Ξ have been rescaled by a factor of
√

2, and θ by a minus sign, w.r.t. the formulae

provided in [22].

– 13 –



J
H
E
P
0
3
(
2
0
0
8
)
0
6
8

The full non-abelian gauge transformations are then given by7

∆Aµ
A = DµΛA +

√
2 g θAM Ξµ M ,

∆Bµν M = 2D[µΞν]M −
√

2 (γM )AB ΛA HB
µν +

√
2 g θAN ηMN Φµν A ,

∆Cµνρ A = 3D[µΦνρ]A + 3
√

2 (γM )AB HB
[µν Ξρ]M +

√
2 (γM )AB ΛB Hµνρ M , (3.13)

with gauge parameters ΛA, ΞµM , Φµν A, and the covariant field strengths

HA
µν ≡ 2 ∂[µAν]

A + g X[BC]
AAµ

BAν
C −

√
2 g θAM Bµν M ,

Hµνρ M ≡ 3D[µBνρ] M + 3
√

2 (γM )AB A[µ
A
(
∂νAρ]

B +
1

3
gX[CD]

BAν
CAρ]

D
)

−
√

2 g θAN ηMN Cµνρ A ,

Hµνρλ A ≡ 4D[µCνρλ] A − (γM )AB

(
6
√

2BµνMHB
ρλ + 6gθBNB[µνMBρλ]N

+8(γM )CDA
B
[µA

C
ν ∂ρA

D
λ] + 2(γM )CFXDE

FA[µ
BAν

CAρ
DAλ]

E
)
. (3.14)

Under arbitrary variations these field strengths transform as

δHA
µν = 2D[µ (∆Aν]

A) −
√

2g θAM ∆Bµν M ,

δHµνρ M = 3D[µ(∆Bνρ]M ) + 3
√

2 (γM )AB HA
[µν ∆Aρ]

B −
√

2 g θAN ηMN ∆Cµνρ A .

δHµνρλ A = 4D[µ∆Cνρλ]A − 4(γM )AB

(
3√
2
HB

[µν∆Bρλ]M −
√

2H[µνρM∆Aλ]
B

)
. (3.15)

One of the consequences of the gauge covariantization à la (3.1) is the modification of the

scalar currents as

P aȧ
µ → Paȧ

µ =
1

4
V̄ γaγȧDµV , Qab

µ → Qab
µ =

1

8
V̄ γabDµV , (3.16)

and similarly for Qµ
ȧḃ, with the gauge covariant derivative given by

DµV = DµV − g (Āµγ
MθN ) γMNV . (3.17)

This leads to the following modified integrability equations:

D[µPaȧ
ν] + 4gFαα̇

µν T
aȧ
αα̇ = 0 ,

Qab
µν +

1

2
Paȧ

[µ Pν]
ȧb + 4gFαα̇

µν T
ab
αα̇ = 0 ,

Qȧḃ
µν +

1

2
Paȧ

[µ Pν]
aḃ + 4gFαα̇

µν T
ȧḃ
αα̇ = 0 , (3.18)

where Qab
µν = 2∂[µQab

ν] + 2Q[µ
acQν]c

b and

Fµν
A ≡ 2 ∂[µAν]

A + gX[BC]
AAµ

BAν
C

= 2 ∂[µAν]
A + g(γMNA[µ)Aθ̄MγNAν] , (3.19)

7As usual in even dimensions there is a subtlety with the gauge transformation law of the D/2-forms [7, 9]

requiring that eventually in the off-shell formulation of gauge transformations, Hµνρ M in the last line

of (3.13) is replaced by Gµνρ M from (3.41), below.
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and

T aȧ
αα̇ =

1

32

(
V̄αα̇γMθN

) (
V̄ γaγȧγMNV

)
,

T ab
αα̇ =

1

32

(
V̄αα̇γMθN

) (
V̄ γabγMNV

)
,

T ȧḃ
αα̇ =

1

32

(
V̄αα̇γMθN

) (
V̄ γȧḃγMNV

)
. (3.20)

These expressions can be simplified and their group theoretical meaning can be made more

transparent by making use of (2.48) and recalling that γMθ
M = 0. As a result, we find

T ab = γ[a T b] , T ȧḃ = −T [ȧγ ḃ] , T aȧ = −1

2
(γaT ȧ + T aγȧ) ,

γaT a + T ȧγȧ = 0 , (3.21)

where we have defined the T-tensors,

T a = VM
a θAMVA , T ȧ = −VM

ȧ θAMVA . (3.22)

Thus, TA = (T a, T ȧ) is in one-to-one correspondence with the embedding tensor θM . For

later purposes, it is convenient to also define

T ≡ γaT a = −T ȧγȧ . (3.23)

The quadratic constraints (3.7) translate into

T a
αα̇T

a
ββ̇

− T ȧ
αα̇T

ȧ
ββ̇

= 0 , TC αα̇ γ
[A

αα̇,ββ̇
TB]ββ̇ = 0 , (3.24)

where γA = (γa × 1, 1 × γȧ). Restricting to SO(5)I × SO(5)II directions, several identities

result from the latter equation. For example, restriction to the SO(5)I direction, upon the

use of (A.5), gives

T (aT̃ b) − 1

4
tr(T aT̃ b) =

1

4
γc tr(T aT̃ cγb) . (3.25)

We recall that “ ∼ ” denotes transposition. The nontrivial content of this equation is the

antisymmetric part in its free SO(5) indices, namely,

tr(T̃ cγ[aT b]) = 0 , (3.26)

while the symmetric projection, contains no new information, in view of (A.6). A useful

identity needed in establishing the supersymmetry of the Lagrangian is obtained by evalu-

ating the antisymmetric part of γaT T̃ a. Using the trace of the constraint equation (3.25),

and recalling (A.6), we obtain

γaT T̃ a + T aT̃ γa = 4T aT̃ a − trT aT̃ a − 2T T̃ + trT T̃ . (3.27)

Next, we observe that the constraint (3.24) enables us to covariantize the identities (3.18)

D[µPaȧ
ν] − 4gHA

µν trT aȧṼA = 0 , (3.28)

Qab
µν +

1

2
P aȧ

[µ Pν]ȧ
b − 4gHA

µν tr T abṼA = 0 . (3.29)
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Further useful relations are furnished by the derivatives of the T -tensors, which take the

form

DµT
a =

1

4
Pbḃ

µ

(
γbT aγ ḃ − 2δabT ḃ

)
,

DµT
ȧ =

1

4
Pbḃ

µ

(
γbT ȧγ ḃ − 2δȧḃT b

)
,

DµT =
1

2
Paȧ

µ

(
−γaT ȧ + T aγȧ − 1

2
γaTγȧ

)
. (3.30)

The quantities P and Q can conveniently be written as

Paȧ
µ = P aȧ

µ + 8g AA
µ tr T aȧṼA , (3.31)

Qab
µ = Qab

µ + 4g AA
µ trT abṼA , (3.32)

and similarly for Qµȧḃ. Finally, the modified Bianchi identities are

D[µHA
νρ] = −

√
2

3
g θAMHµνρM , (3.33)

D[µHνρσ]M =
3

2
√

2
H̄[µνγMHρσ] −

1

2
√

2
g θA

MHµνρσ A . (3.34)

3.2 The gauged maximal D = 6 supergravity

The building blocks we have just described can now be used to gauge the maximal D=6

supergravity. Thus, we introduce the magnetic potentials Bm
µν and the 3-form potentials

CµνρA accordingly, and in the ungauged Lagrangian we make the replacements

Hµνρm → Hµνρm , HA
µν → HA

µν , P aȧ
µ → Paȧ

µ , (3.35)

as well as gauge covariantize the derivatives by the prescription

Dµ → Dµ , Qab
µ → Qab

µ , Qȧḃ
µ → Qȧḃ

µ , (3.36)

in the supersymmetry transformation rule, and the Lagrangian with the exception of the

topological terms. They are modified by the requirement of all the gauge symmetries de-

scribed in the previous section. This turns out to be highly constraining nontrivial require-

ment which remarkably fixes the topological terms entirely, as will be described in detail in

the next section. These modifications will introduce new, gauge coupling constant g depen-

dent supersymmetry variations due to the explicitly g-dependent terms in (3.28), (3.31),

(3.32) and (3.34). To cancel them, as usual, we parametrize the most general fermionic

mass terms that are linear in the T-tensors, and a potential that is quadratic in the T-

tensors, and introduce linear in the T-tensor terms in the supersymmetry variations of the

fermions. As for the supersymmetry transformations of the newly introduced higher rank

p-forms, that of Bm
µν is straightforward by simply requiring that together with Bµνm they

form a 10-plet of SO(5, 5). Regarding the 3-form potential CµνρA we simply parameterize

its supersymmetry transformation rules in a fashion dictated by gauge symmetries and di-

mensional analysis. Requiring that all the g-dependent variations cancel, we determine all
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the coefficients used in parameterizing the Lagrangian and supersymmetry transformation

rules. The subtle features that arise in these computations are to a large extent parallel

to those encountered in the construction of the gauged maximal supergravities in D=4 [8].

We will spell out some more details of the salient features in this computation but first, let

us present our results.

We have found that the Lagrangian L = LB + LF , up to quartic fermion terms, is

given by

e−1LB =
1

4
R− 1

12
Hm ·KmnHn − 1

4
MABHA

µνHµνB

− 1

16
Paȧ

µ Pµ
aȧ + g2

(
trT aT̃ a − 1

2
trT T̃

)
+ e−1Ltop , (3.37)

where Ltop is the topological part of the Lagrangian given in the next section, and

e−1LF = −1

2
ψ̄+µγ

µνρDνψ+ρ −
1

2
ψ̄−µγ

µνρDνψ−ρ −
1

2
χ̄aγµDµχ

a − 1

2
χ̄ȧγµDµχ

ȧ

+
1

4
Paȧ

µ Iµ
aȧ − 1

2
HA

µν J
µν
A +

1

6

(
P+Ha · Oa + P−Hȧ · Oȧ

)

+gψ̄+µγ
µνTψ−ν + 2g

(
ψ̄µγ

µT aχa + χ̄ȧT ȧγµψµ

)

+
1

2
g
(
χ̄ȧTγȧγµψµ − ψ̄µγ

µγaTχa
)

+gχ̄ȧ

(
2γaT ȧ − 2T aγȧ +

1

2
γaTγȧ

)
χa , (3.38)

where the fermionic bilinears are as given in (2.58).

The supersymmetry transformations are

δeµ
r = ǭ+γ

rψ+µ + ǭ−γ
rψ−µ ,

δψµ+ = Dµǫ+ − 1

24
Ha

ρσκγ
aγρσκγµǫ+ +

1

8

(
γµ

νρ − 6δν
µγ

ρ
)
HA

νρVA ǫ− +
1

4
g γµTǫ− ,

δψµ− = Dµǫ− − 1

24
Hȧ

ρσκγ
ȧγρσκγµǫ− +

1

8

(
γµ

νρ − 6δν
µγ

ρ
)
HA

νρṼA ǫ+ − 1

4
g γµT̃ ǫ+ ,

δχȧ =
1

4
Paȧ

µ γaγµǫ+
1

12
Hȧ

µνργ
µνρǫ+

1

4
HA

µνVAγ
ȧγµν ǫ+ 2g T ȧǫ+

1

2
g Tγȧǫ ,

δχa =
1

4
Paȧ

µ γȧγµǫ+
1

12
Ha

µνργ
µνρǫ+

1

4
HA

µν ṼAγ
aγµν ǫ+ 2g T̃ aǫ− 1

2
g T̃ γaǫ ,

δAA
µ = −ǭV Aψµ + ψ̄µV

Aǫ+
1

2
ǭγµγ

aV Aχa +
1

2
χ̄ȧV Aγȧγµǫ ,

∆BµνM =
√

2Va
M

(
ψ̄[µγν]γ

aǫ+
1

2
χ̄aγµνǫ

)
−

√
2V ȧ

M

(
ψ̄[µγν]γ

ȧǫ+
1

2
χ̄ȧγµνǫ

)
,

∆CµνρA = 3
(
ǭVAγ[µνψρ] − ψ̄[µγνρ]VAǫ

)
+

1

2

(
ǭγaVAγµνρχ

a + χ̄ȧVAγ
ȧγµνρǫ

)
,

δVA =
1

2

(
γaVAγ

ȧ
) (
χ̄aγȧǫ+ χ̄ȧγaǫ

)
. (3.39)

We emphasize again that the ± chiralities have been shown explicitly only when necessary,

and when suppressed they can be deduced from the structure of the terms. We also note
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that Hµνρa and Hµνρȧ are defined by

Hm =
√

2
(
Vm

aP+Ha − Vm
ȧP−Hȧ

)
, (3.40)

where we have suppressed the tensorial indices. This is analogous to the relation (2.38) in

the ungauged model. Similarly, we can define the analog of the field strength (2.25) as

GM =

(
Gm

Gm

)
=

(
Hm

jKmnHn

)
. (3.41)

As in (2.39), it follows that

P+Ha =
1√
2
P+GMVM

a , P−Hȧ = − 1√
2
P−GMVM

ȧ . (3.42)

Thus, the supersymmetry transformations, as well as the Pauli couplings involving G, are

manifestly duality-covariant. The supersymmetry algebra is expected to close on-shell with

field dependent composition symmetry parameters, as usual. Normally, the fermionic field

equations are needed for the closure, but here, the closure on the three-form potential

requires its field equation as well. In the next section, we will show that this field equation

takes the simple form θAM (GM −HM ) = 0.

We conclude this section by expressing the potential explicitly in terms of the embed-

ding tensor and the coset representatives, and observe that it takes the remarkably simple

form

V (φ) =
1

2
θAMθBNVa

MVb
N

(
V̄Aγ

bγaVB

)
. (3.43)

3.3 The topological term

In establishing the gauge and supersymmetry of the action a highly complicated topological

term is needed. The full topological term is given by

Ltop =
1

36
e−1ǫµνρσκλ

[
− θ̄mCµνρ

(
θ̄mCσκλ +

√
2Hσκλ

m
)
− 3√

2
θ̄MγNθPBµνMBρσNBκλP

+18(θ̄MγmAµ∂νBρσm + θ̄mγMAµ∂νBρσ
m)Bκλ

M + 18Āµγmθ
M Āνγ

mθNBρσMBκλN

18Āµγ
Mθm

(
Āνγ

Nθm − 2Āνγ
mθN

)
BρσMBσκN − 9

√
2∂µĀνγ

m∂ρAσBκλm

−18
√

2
(
θ̄MγmAµ − θ̄mγ

MAµ

)
∂νĀργ

mAσ BκλM − 3
√

2 Āµγ
mXνρ∂σBκλm

+6
√

2 θ̄MγNAκ ∂ρĀσγ
NAλBµνM − 3√

2
Āµγ

NXρσ ĀνγNθ
M BκλM

−6
√

2 Āµγ
mXνρ

(
Āσγ

Mθm − Āσγmθ
M
)
BκλM + 9Āµγm∂νAρĀσγ

m∂κAλ

+
12

5
ĀµγMXνρ Āσγ

M∂κAλ − 6Āµγ
mXνρ

(
Āσγm∂κAλ − 1

6
ĀσγmXκλ

)]
, (3.44)

where the gauge coupling constant g is suppressed and

Xµν
A ≡ Ā[µγ

MθN(Āν]γMN )A . (3.45)

The topological Lagrangian Ltop is completely fixed by requiring gauge invariance of Ltop+

Lkin. In fact, the topological term can already completely be determined just starting from
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its leading term θA
m Cµνρ A ∂σBκλ

m and completing the term by requiring invariance under

tensor gauge transformations δΦLtop = 0 = δΞLtop. Subsequently, one can show that its

general variation takes the fully covariant form (3.48) below, which is a strong consistency

check. Useful identities needed for these computations are provided in appendix B.

Note that the mass term for the three forms θA
m θBm is automatically antisymmetric

due to the quadratic constraint. Moreover, no such term would exist with full SO(5, 5)

covariance, i.e. it is essential here that the Lagrangian exhibits only GL(5) covariance.

Also the cubic B3 coupling θ̄MγNθP is automatically symmetric in (MNP ) due to the

quadratic constraint (3.7). Finally, note that also the A6 term could not exist in an

SO(5, 5) covariant Lagrangian: there is no SO(5, 5) singlet in the tensor product of Θ2A6.

Again it is essential that SO(5, 5) is broken to GL(5).

In the ungauged theory (θAM = 0) the topological term (3.44) is simply

L =
1

2
ĀγmdA ∧

(
dBm +

1

4
ĀγmdA

)
, (3.46)

and contained in (2.56). For electric gaugings (θA
m = 0) the topological term reduces to:

Ltop =
1

36
e−1ǫµνρσκλ

[
− 3√

2
θ̄mγnθpBµνmBρσnBκλp + 18θ̄nγmAµ∂νBρσmBκλn

+18Āµγmθ
nĀνγ

mθpBρσnBκλp − 9
√

2 ∂µĀνγ
m∂ρAσBκλm

−18
√

2 θ̄nγmAµ∂νĀργ
mAσ Bκλn − 3

√
2 Āµγ

mXνρ∂σBκλm

+6
√

2 θ̄mγNAµ

(
Āνγ

N∂ρAσ − 1

4
Āνγ

NXρσ

)
Bκλm

+6
√

2 Āµγ
mXνρĀσγmθ

nBκλn + 9Āµγm∂νAρĀσγ
m∂κAλ

+
12

5
ĀµγMXνρ Āσγ

M∂κAλ − 6Āµγ
mXνρ

(
Āσγm∂κAλ − 1

6
ĀσγmXκλ

)]
, (3.47)

and one sees explicitly that in this case neither 3-forms Cµνρ A nor magnetic two-forms

Bµν
m enter this Lagrangian. For the B3 term we have used here that θ̄mγpθ

n = 0 for

electric gaugings as a consequence of the quadratic constraint.

We find that the complete variation of the topological term is given by

e−1δLtop = − 1

8
√

2
e−1 ǫµνρσκλH̄µνγ

MHρσ (∆Bκλ M ) (3.48)

−1

2
jHm ·D(∆Bm) − 1

3
√

2
gjHm · (θ̄m∆C) − 1√

2
jHm · (H̄γm ∆A) ,

and thus expressible in a very compact form in terms of the covariant variations ∆ defined

above. In the ungauged theory, only the first and the last term of this variation are present,

while the second term becomes a total derivative. Note that the variation (3.48) is only

GL(5) invariant. This forbids for example in the gauged theory to integrate by parts the

second term, as the sum over m is not the full SO(5, 5) covariant one whereas the derivative

Dσ is covariant with respect to a gauge group that might not be contained in GL(5). Only
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together with the variation of the kinetic term

e−1δLkin(A,B) = −Hµν AMAB

(
Dµ(∆Aν

B) − 1√
2
gθBM ∆Bµν M

)
(3.49)

− 1

6
Hm ·Kmn

(
3D(∆Bn) + 3

√
2 H̄γn ∆A−

√
2 gθ̄n ∆C

)
,

the two non-covariant terms join and the combined variation takes the form

e−1(δLkin(A,B) + Ltop) = −Hµν AMAB

(
Dµ(∆Aν

B) − 1√
2
gθBM ∆Bµν M

)

− 1

8
√

2
e−1 ǫµνρσκλH̄µνγ

MHρσ (∆Bκλ M )

−1

2
jGM · D∆BM − 1√

2
jGM · (H̄γM ∆A)

− 1

3
√

2
gj(HM − GM ) · (θ̄M∆C) . (3.50)

Since there is no kinetic term for the 3-form potential CA, its bosonic field equation is given

by

gθA
m (Hm − jKmnHn) = 0 , (3.51)

where we have used (3.41). As for the bosonic field equation of the “magnetic” 2-form

potentials, it takes the form

gθA
m

(
Hµνρσ A +

1

2
eǫµνρσκλMABHκλB

)
= 0 , (3.52)

where we have used the Bianchi identity (3.34). This equation, as expected, furnishes the

duality relation between the three-form potentials and the vector fields.

The variation formula (3.50) is also very useful in finding the gauge coupling con-

stant dependent terms in the action and supersymmetry transformation rules that are

needed for establishing supersymmetry. The supersymmetry variations, with undifferenti-

ated supersymmetry parameter, that do not depend on the gauge coupling constant will

be covariantizations of those which arise in the ungauged Lagrangian. Therefore, they will

cancel as in the ungauged theory, and in a covariantized form. Supersymmetric variations

with overall explicit coupling constant dependence, on the other hand, cancel as follows:

1. The partial integration in the GM · D∆BM term yields gHµνρσ A via the modified

Bianchi identity (3.34). This is canceled by a term arising in the variation of the

gravitino in the Pauli coupling term G ·O, followed by partial integration, and use of

the Bianchi identity (3.34).

2. The terms involving gHA coming from the H ·∆B term in (3.50) and the new varia-

tions of the Pauli term JH, are canceled by the terms coming from the old variations

in the fermionic mass terms, in gravitino kinetic term and the Noether term PµI
µ,

using (3.29) and (3.28).
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3. The terms involving gHM coming from the HM ·∆C term in (3.50), cancel the terms

coming from the variation in the Pauli term JH using the modified Bianchi identity

(3.33). In fact, this is a convenient way to determine the supersymmetric variation

of CA.

4. The terms involving gGM coming from the GM ·∆C term in (3.50), the new variations

of the Pauli coupling term G · O and the old variations of the g-dependent fermionic

mass terms, all cancel.

5. Finally, the new variations of the fermionic mass terms and the old variations of the

potential, all cancel.

3.4 Classification of gaugings under GL(5)

So far, we have shown that every tensor θAM in the 144c of SO(5, 5) which satisfies the

quadratic constraint (3.7) defines a consistent and maximally supersymmetric gauging in

six dimensions. It remains to study the possible solutions of (3.7) and to identify the

resulting theories. As usual, a systematic way to scan the various possibilities is given

by decomposing θAM under a given subgroup of SO(5, 5) and to separately analyze the

different irreducible parts. In six dimensions, a distinguished subgroup is the maximal

GL(5) ⊂ SO(5, 5) which allows to identify a possible seven-dimensional origin of the theories

— with SL(5) corresponding to the seven-dimensional duality group — as well as a possible

origin in eleven dimensions, in which context GL(5) is associated to the five-torus on which

the reduction is performed.

Under GL(5), the SO(5, 5) representations break as

10 → 5+2 + 5′−2 , 16s → 1−5 + 5′+3 + 10−1 , 16c → 1+5 + 5−3 + 10′+1 , (3.53)

where we denote the Bm by 5 and the Bm by 5′. The adjoint breaks as

45 → 10 + 240 + 10+4 + 10′−4 . (3.54)

The 10+240 is the GL(5) subgroup, the 10+4 generators are realized as shift symmetries on

the scalar fields. They correspond to the off-diagonal block z in (2.11) and thus correspond

to off-shell symmetries of the Lagrangian. The complete off-shell symmetry group is thus

given by GL(5) ⋉ 10+4. The 10′−4 generators on the other hand are hidden symmetries

that correspond to the off-diagonal block y in (2.11) and are realized only on-shell, i.e.

do not constitute symmetries of the action. We expect that there is a dual Lagrangian in

which the 10+4 and 10′−4 generators have exchanged their roles.

Next, we turn to the classification of gaugings under GL(5). Under GL(5), the embed-

ding tensor 144c decomposes as

144c → 5′+3 + 5+7 + 10−1 + 15−1 + 24−5 + 40′−1 + 45′+3 . (3.55)

Splitting θAM = (θAm, θA
m) this amounts to distinguishing between electric and magnetic

gaugings: gaugings triggered by θAm only involve the electric two-forms Bm and no three-

forms. This can be seen explicitly in the tensor gauge transformations (3.13), the covariant
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field strengths (3.14) and the topological term (3.47). On the other hand, gaugings triggered

by θA
m involve magnetic two-forms Bm as well as additional three-form tensor fields. In

terms of representations, these components can contain

θAm = 5′+3 + 10−1 + 24−5 + 40′−1 , θA
m = 5′+3 + 5+7 + 10−1 + 15−1 + 45′+3 .(3.56)

Comparing this to (3.55), we see, that 24−5 + 40′−1 and 5+7 + 15−1 + 45′+3 trigger purely

electric and purely magnetic gaugings, respectively, whereas 5′+3 + 10−1 correspond to

gaugings involving simultaneously electric and magnetic two-forms. Recall the quadratic

constraint

θAM θAN ηMN = 0 , θAM θB[N (γP ])AB = 0 . (3.57)

The first equation is automatically satisfied for gaugings that are purely electric or purely

magnetic. For these we have to impose only the second equation, which is a 320 under

SO(5, 5) and thus

320 → 5+2 + 5′−2 + 40+6 + 40′−6 + 45−2 + 45′+2 + 70+2 + 70′−2 . (3.58)

This shows that e.g. any θ in the 24−5 (since its square does not show up in (3.58))

defines a consistent (electric) gauging. In fact, this makes sense: these are the Scherk-

Schwarz gaugings obtained by reduction from seven dimension, the 24−5 corresponds to

choosing a generator in the seven-dimensional symmetry group SL(5). The 40′−1 on the

other hand also defines purely electric gaugings, but these θ’s need to satisfy an additional

quadratic constraint in the 70′−2 of (3.58). These are the theories obtained by torus

reduction from gaugings in seven dimensions, where indeed (part of) the embedding tensor

lives in the 40′ and its quadratic constraint in the 70′ [22]. Explicitly, for θ given by

ϑmn,k = ϑ[mn],k with ϑ[mn,k] = 0, the quadratic constraint is

ϑmn,rϑpq,s ǫmnpqk = 0 . (3.59)

Purely magnetic gaugings described by the 5+7 also satisfy automatically the quadratic

constraint (3.58). They may correspond to reductions from eleven dimensions with non-

trivial four-form flux. Also for magnetic gaugings described by the 15−1, the square of θ

does not show up in (3.58), thus these are automatically consistent theories. They come

from torus reduction of seven-dimensional CSO(p, q, r) gaugings [12, 22], whose embedding

tensor indeed transforms in the 15. And it makes perfect sense that these give magnetic

gaugings: in order to gauge CSO(p, q, r) in seven dimensions, a number of two-forms have

been dualized into three-forms, whose reduction to six dimensions gives rise to the magnetic

dual two-forms. A more constrained version of magnetic gaugings is parametrized by the

45′+3 (explicitly: some traceless ϑmn
r = ϑ

[mn]
r ) with a quadratic constraint in the 40+6,

given by

ϑmn
r ϑpq

[s ǫk]mnpq
= 0 . (3.60)

Note the duality of this constraint to (3.59). As ϑmn
r has the index structure of a torsion,

these theories could presumably be obtained by reduction from eleven dimensions on some

twisted tori.
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ΘA
MN 10′−4 10 240 10+4

5−3 5+7 5′+3 (5′ + 45′)+3 (10 + 40′)−1

10′+1 (5′ + 45′)+3 10−1 (10 + 15 + 40′)−1 24−5

1+5 10−1 24−5

Table 1: The top row represents the SO(5, 5) generators, the left column represents the vector fields

and we have depicted their mutual couplings by the various GL(5) components of the embedding

tensor according to (3.1).

The gaugings triggered by 5′+3 and 10−1 (let us parametrize them by ϑm and an

antisymmetric ϑmn = ϑ[mn], respectively) are neither purely electric nor purely magnetic,

i.e. the first equation of (3.57) has to be imposed explicitly. However, it follows immediately

that they give rise to only few constraints. While apparently they cannot be switched on

together, ϑm alone defines a consistent gauging, and ϑ[mn] comes with the constraint

ϑklϑmn ǫ
klmnp = 0 , (3.61)

which is solved by ϑ[mn] = λ[mξn], which is a possible candidate to be the most general

solution.

Of course, there are many more gaugings possible which correspond to simultaneously

switching on various GL(5) irreducible components of θ.

The nature of these gaugings is illustrated by table 1. In accordance with the discussion

above, we see that electric gaugings (those triggered by the 24−5 + 40′−1) involve only

generators that belong to the off-shell symmetry group GL(5) ⋉ 10+4 of the Lagrangian.

Magnetic gaugings in the 5+7 + 45′+3 on the other hand also gauge symmetries that are

realized only on-shell, very much like what happens in other even dimensions. A notable

exception are gaugings triggered by the 15−1, these are magnetic in the sense that they

require introduction of magnetic two-forms and three-form fields, on the other hand they

only gauge on-shell symmetries inside of GL(5)! This is rather different from the situation

in four dimensions, where every gauging whose gauge group resides within the off-shell

symmetry group of the Lagrangian can be realized as a purely electric gauging, i.e. without

introduction of magnetic forms [7]. Note however that due to the first quadratic constraint

in (3.7) there is always a frame, which may be reached by an O(5, 5) rotation from Tanii’s

Lagrangian, in which the gauging takes a purely electric form. However, this may not be

the frame the most suited in order to identify a particular higher dimensional origin.

3.5 Classification of gaugings under SO(4, 4) and truncation to N = (1, 1) theories

It would be interesting to consider truncations of our results to D = 6 half-maximal gauged

supergravity. The duality group of non-chiralD = 6 half-maximal gauged supergravity cou-

pled to 4 + n vector multiplets is given by R+ × SO(4, 4 + n). There are three different

classes of gaugings [17]. The gauging of the R+ scaling symmetry leads to an embedding

tensor in the fundamental representation of the duality group. On the other hand, the

gauging of a subgroup of the SO(4, 4+n)-factor leads to an embedding tensor in the three-

index antisymmetric representation. On top of this there is also a massive supergravity
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ΘA
MN 8−2

v 10 280 8+2
v

8+1
c 8+1

s + 56+1
s 8−1

c 8−1
c + 56−1

c 8−3
s

8−1
s 8+3

c 8+1
s 8+1

s + 56+1
s 8−1

c + 56−1
c

Table 2: The top row and the left column represent the SO(5, 5) generators and the vector fields

of the maximal theory, respectively, and we have depicted their mutual couplings by the various

SO(4, 4) components of the embedding tensor according to (3.1).

θAM 1−2 80
v 1+2

8+1
c 8+3

c 8+1
s + 56+1

s 8−1
c

8−1
s 8+1

s 8−1
c + 56−1

c 8−3
s

Table 3: The branching of the matrix θAM .

with an embedding tensor in the fundamental representation. This includes the massive

supergravity of [23]. Gaugings of this theory coupled to further matter multiplets have

been constructed in [24, 25]. The IIA origin of the n = 16 case via a K3 compactification

was studied in [26]. A massive supergravity is a particular deformation of the p-form gauge

transformations that does not involve the gauging of a duality group. These massive super-

gravities are also described by the embedding tensor approach. The T-duality properties

of the D = 6 half-maximal massive supergravities have been discussed in [27, 28].

Let us see, how these structures can be embedded into our results. The duality group

of the half-maximal supergravity coupled to 4 vector multiplets embedded in the maximal

theory is R+ × SO(4, 4) under which the SO(5, 5) representations break according to

10 → 80
v + 1+2 + 1−2 , 16c → 8+1

c + 8−1
s ,

45 → 10 + 280 + 8+2
v + 8−2

v . (3.62)

In particular, the embedding tensor breaks according to

144c → 56−1
c + 56+1

s + 8−1
c + 8+1

s + 8+3
c + 8−3

s , (3.63)

and we may analyze the gaugings triggered by the different SO(4, 4) irreducible parts. The

three different classes discussed above correspond to the gaugings induced by the 8−1
c , the

56−1
c and the 8+3

c , respectively. Again we can infer the structure of these gauge couplings

from the table of minimal couplings, see table 2. The structure of the deformed p-form

tensor hierarchy can be illustrated by explicitly branching the matrix θAM , see table 3,

which plays the role of the intertwiner between vectors/2-forms and 2-/3-forms, respec-

tively, cf. (3.14). Truncation to the half-maximal theory coupled to 4 vector multiplets

corresponds to projecting out the 8−1
s vector fields and the 80

v two-forms, in the bosonic

sector. Next, we describe the two classes of gaugings of this theory triggered by the 8+3
c

and 8−1
c .

Let us first consider the gaugings induced by the 8+3
c . As its square does not appear in

the decomposition of the quadratic constraint 10+126c +320, a gauging induced by such
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an embedding tensor ϑα is automatically consistent. According to table 2, it gauges the

8v shift symmetries, while table 3 shows that it induces a Stückelberg type coupling of the

form Fµν
α+ϑαBµν . Alternatively, we may consider the gaugings induced by the component

8−1
c gaugings induced by the component 8−1

c which we shall denote by ϑ̃α. As the quadratic

constraint contains a 1−2, we deduce that ϑ̃α should be a null vector (ϑ̃αϑ̃α = 0). This

defines another class of viable gaugings. According to table 2, these in particular gauge the

R+ shift symmetry. Note however, that 8+3
c and 8−1

c cannot be switched on simultaneously,

but lead to a quadratic constraint of the form ϑ(αϑ̃β) = 0. This is in line with the occurrence

of corresponding 6-form potentials in the same representations [17 – 19].

The 4 vector multiplets in these theories can be consistently truncated to obtain the

pure half-maximal theory [23]. It is well known that there exists an SU(2) gauged ver-

sion of this theory with an additional massive deformation parameter. The SU(2) gauge

group is the non-chiral diagonal subgroup of the SU(2) × SU(2) isomorphism group of the

N = (1, 1) Poincaré superalgebra. It is interesting to determine if and how this theory can

be embedded in the gauged maximal theory. To this end, considering the gaugings induced

by the 8+3
c discussed above, upon a consistent truncation to the pure half-maximal theory,

the shift symmetries and the associated vector fields 8s are projected out and what remains

is precisely Romans’ massive deformation. In this theory, the only effect of the gauging

in the bosonic sector is the Stückelberg type coupling and the scalar potential, the mass

parameter m corresponding to a fixed component within ϑα. Thus, we are able to show

how Romans’ massive deformation of the pure half-maximal theory can be embedded into

the maximal theory where it is a true gauging of shift isometries.

We can show that the SU(2) gauging with mass parameter set to zero follows from

a suitable truncation as well. In fact, there exists a variant of Romans’ theory [29, 30]

emerging in a generalized Kaluza-Klein reduction of D=11 supergravity on K3 × R, with

all 4 vectors abelian, which should also be embeddable in gauged maximal supergravities.

However, it remains an open question if Romans’ theory with non-vanishing gauge coupling

constant and mass deformation parameter can be embedded in the maximal theory. In

general, the lower supersymmetric 6D supergravities admit more general couplings than

those which can be obtained by truncation of the maximal theory since the quadratic

constraints encountered in gauging of the maximal theory are far more stringent than what

is required in gauging of the lower supersymmetric theories. In fact, a very simple example

of this phenomenon arises in seeking a truncation of Romans’ theory to an N = (1, 0)

supergravity that maintains any gauging at all. One quickly finds that this is not possible,

and indeed this is the case for the variant of the Romans’ theory as well. On the other hand,

a U(1) gauged N = (1, 0) supergravity does exist in its own right, and it is constructed

directly in the N = (1, 0) supersymmetric setting [31, 32].

In conclusion, it would be highly interesting to see, which gaugings of the half-maximal

theory, or indeed minimal theory, with or without matter couplings, can be lifted to the

maximal gaugings and which of their solutions may be embedded. We leave these and

related questions for future work.
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A. Notations and conventions

In our conventions:

{γr, γs} = 2ηrs , ηrs = diag(−,+,+,+.+,+)

{ΓA,ΓB} = 2ηAB , ηAB = diag(+,+,+,+,+,−,−,−,−,−) , (A.1)

where A = (a, ȧ). Moreover, γr1...r6
= ǫr1...r6

γ7 and (γ7)
2 = 1. A convenient representation

for ΓA is

Γa = 1 × γa × σ1 , Γȧ = γȧ × 1 × iσ2 , (A.2)

with

{γa, γb} = 2δab , δab = diag(+,+,+,+,+) ,

{γȧ, γḃ} = 2δȧḃ , δȧḃ = diag(+,+,+,+,+) , (A.3)

From the position where they are used, it can be seen that the matrix γa is either (γa)α
β or

(γa)αα̇
ββ̇ = (γa)α

β δβ̇
α̇, depending on what it acts on, and similarly for γȧ. The indices (a, ȧ)

on the γ-matrices are raised and lowered with δab and δ
ȧḃ

. We use the chirally projected

SO(5, 1) Dirac matrices, such that γµ are symmetric and γµνρ are antisymmetric. Similarly,

we use the chirally projected SO(5, 5) Dirac matrices and all (anti) symmetrizations are

with unit strength. Note that there is no need to raise and lower the spinor indices in this

chiral notation. The USp(4) indices are raised and lowered by the symplectic invariant

tensors as: Xα = ΩαβXβ, Xα = XβΩβα with ΩαβΩβγ = −δγ
α. The symmetry properties of

the γ and Γ matrices are as follows:

γµC : symmetric , γµνρC : antisymmetric

(γa)αβ : antisymmetric , (γab)αβ : symmetric

(γM , γM1···m5
)AB : symmetric , (γMNP )AB : antisymmetric (A.4)

The SO(5) γ-matrices satisfy the identity

(γa)α
β(γa)γ

δ = 2δδ
αδ

β
γ + 2ΩαγΩβδ − δβ

αδ
δ
γ . (A.5)
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Note also that any Aαβ = −Aβα, and any Sαβ = Sβα can be expanded as

A =
1

4
trA+

1

4
γatr γaA , (A.6)

S = −1

8
γabtr γabS . (A.7)

The matrices VA
αα̇ and VAαα̇(A = 1, . . . , 16, α, α̇ = 1, . . . , 4) can be treated as sixteen 4×4

matrices V A and VA. The index A is a chiral SO(5, 5) spinor index which is never raised

and lowered but the α and α̇ indices can be raised and lowered as usual.

Whenever the row and column indices of a matrix are suppressed we will always assume

that the indices are in the order (M)⋆
⋆, with the exception of the chirally projected SO(5, 1)

Dirac matrices γµ and again chirally projected SO(5, 5) matrices γM , in which case they

are both up or down. Thus, for example,

ψ̄γaχ = ψ̄α(γa)α
β χβ , ψ̄γaVAχ = ψ̄α(γa)α

β (VA)β
β̇χβ̇ ,

V̄ γMV = V Aαα̇(γM )ABV
B
αα̇ , V̄ γMNV = V αα̇(γMN )A

BVBαα̇ . (A.8)

Furthermore, V̄ always denotes V Aαα̇. Finally, our conventions for differential forms are

as follows:

ω =
1

p!
dxν1 ∧ · · · dxνp ων1...νp , dxν1 ∧ · · · dxν6 = −e−1ǫν1...ν6d6x . (A.9)

B. Useful identities

Proving invariance of the topological term (3.44) under tensor gauge transformations and

showing that its variation takes the fully covariant form (3.48) is quite lengthy and re-

quires a number of rather non-trivial identities which combine SO(5, 5) properties with the

constraints on the embedding tensor θAM . Among the SO(5, 5) identities are

0 = γM A(B γ
M

CD) ,

0 = γK A(Cγ
MNK

D)B − γK B(Cγ
MNK

D)A + γK CDγ
MNK

AB + 4γ[M
A(Cγ

N ]
D)B .(B.1)

The following identity holds upon antisymmetrization in indices [ABC]:

0 = γK ADγL EFγ
MKL

BC + 2γK ADγL B(Eγ
MKL

F )C + 4γM
A(Eγ

K
F )BγK CD . (B.2)

Another SO(5, 5) identity (upon antisymmetrization in indices [ABCD]) is given by:

0 = 10 γK AEγ
K

BF γ
PQM

CD + 8 γ(M
AEγ

K)
BF γ

PQ
K CD + 10 γQ

AEγK BF γ
PMK

CD

− 10 γK AEγ
P

BF γ
QMK

CD − 4 γQ
AF γK BEγ

PMK
CD + 4 γK AFγ

P
BEγ

QMK
CD

+ 2ηPQγK AEγL BF γ
MKL

CD − 2γK EFγ
KL(P

ABγL
Q)M

CD

− 2γPNK
AEγ

QL
N BF γ

M
KLCD − γKN [P

EFγNKLABγ
Q]ML

CD . (B.3)

We derive this identity by first observing that there must be a relation between this number

of terms with this symmetry structure in the free indices, as a consequence of represen-

tation theory. We then compute the coefficients either by tracing or by using an explicit

representation.
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Now we multiply this identity with θE
P θ

F
Q and use the tracelessness γM

AB θ
B
M = 0,

upon which this identity reduces to

0 = θE
P θ

F
Q

(
3γK AEγ

K
BF γ

PQM
CD + 2γM

AEγ
K

BF γ
PQ

K CD − 6γQ
AEγK BF γ

PMK
CD

+ ηPQγK AEγL BF γ
MKL

CD + γK EFγ
KLP

ABγL
QM

CD

)
. (B.4)

Finally we may use the quadratic constraint on θ and obtain

0 = θE
P θ

F
Q

(
3γK AEγ

K
BF γ

PQM
CD + 2γM

AEγ
K

BF γ
PQ

K CD − 6γQ
AEγK BF γ

PMK
CD

)
,

(B.5)

a quite strong identity (upon antisymmetrization in indices [ABCD]), which enters the

calculation of the variation of the topological term.
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