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ABSTRACT: We construct the most general gaugings of the maximal D = 6 supergravity.
The theory is (2,2) supersymmetric, and possesses an on-shell SO(5,5) duality symmetry
which plays a key role in determining its couplings. The field content includes 16 vector
fields that carry a chiral spinor representation of the duality group. We utilize the embed-
ding tensor method which determines the appropriate combinations of these vectors that
participate in gauging of a suitable subgroup of SO(5,5). The construction also introduces
the magnetic duals of the 5 two-form potentials and 16 vector fields.
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1. Introduction

Gaugings of maximal supergravity theories have revealed intriguing insights into the struc-
ture of supergravity theories as well as into their higher dimensional origin and the possi-
ble symmetry structures underlying string and M-theory. The coupling of vector fields to
charges assigned to the elementary fields renders the gauge theories generically non-abelian
and — more general — in higher dimensions induces a deformation of the hierarchy of for-
merly abelian p-form tensor gauge transformations. The most systematic approach for a
classification and construction of gauged supergravities resorts to exploiting the duality
symmetry underlying the ungauged theories. Their possible deformations are described in
terms of a constant tensor © encoding the embedding of the gauge group into the duality
group G of the ungauged theory [[]-[f]. Transforming in a certain representation of the
duality group, this tensor parametrizes the possible gaugings in a manifestly covariant way.
In particular, consistency of the theory can then be encoded in a number of representation
constraints on ©. The action of the gauged supergravities can be entirely parametrized by



the embedding tensor; in particular, the scalar potential that arises upon gauging is given
by a covariant expression bilinear in © dressed with the scalar fields.

From a higher-dimensional perspective a large part of the gaugings constructed in a
given dimension finds a natural interpretation as the effective theories arising from compact-
ification on curved manifolds, and/or in the presence of (geometrical and non-geometrical)
fluxes (see, e.g. [[l-[]). The various geometrical and flux-parameters may be associated
with the different components of the tensor ©. Vice versa, decomposing © under suitable
subgroups of G allows to identify by merely group-theoretical methods the effective the-
ories descending from particular compactifications. The covariant formulation of gauged
supergravities furthermore allows to directly identify the transformation of the various flux
parameters under the action of the duality group.

For the set of antisymmetric p-form tensor fields, the covariant construction of the
gaugings induces a deformation of the hierarchy of formerly abelian gauge transformations.
In particular, it gives rise to a Stiickelberg-type coupling that shifts the p-forms with
the gauge parameter of the (p+1)-forms. The tensor required for such a coupling that
intertwines between p-forms and (p+1)-forms is proportional to the embedding tensor ©.
As a consequence, the gauging non-trivially entangles the tensor gauge transformations
of forms of different degree. On the level of the Lagrangian, this entanglement has an
interesting consequence: while in the abelian theory all bosonic degrees of freedom are
carried by the metric and antisymmetric p-forms with p < [D/2] — 1 (recall that in D
dimensions all higher-rank massless p-forms may be dualized down into massless (D—p—2)-
forms), the generic gauging in its covariant formulation also requires explicit couplings of
the [D/2]-forms in the action. Consistency requires that these additional forms arise with
no kinetic but only a topological term (proportional to the gauge coupling constant), such
that they do not introduce new propagating degrees of freedom. However, as a consequence,
gauge-fixing part of the tensor gauge freedom may shuffle some degrees of freedom from
the lower degree forms to the new forms, in particular render some of the latter massive.
It is the specific form of the embedding tensor together with the choice of gauge fixing
which encode the proper distribution of the degrees of freedom among the p-forms. This
fits nicely with the observations in explicit compactification scenarios where turning on
fluxes may induce massive [D/2]-forms, absent in the ungauged theory.

In even dimensions D = 2n, there is an additional subtlety related to the fact that the
duality group G of the ungauged theory is not realized off-shell but only on the combination
of equations of motion and Bianchi identities of the (n—1)-forms. More specifically, only
(the “electric”) half of the (n—1)-forms shows up in the Lagrangian while the other half
is defined as their on-shell (“magnetic”) duals. Only together they form an (irreducible)
representation of G. Upon gauging, both electric and magnetic (n —1)-forms enter the
Lagrangian; again the latter couple only with a topological term in order to preserve the
balance of degrees of freedom. Contrary to what one might expect at first glance, the con-
struction allows even for the gauging of subgroups of G that are not off-shell realized in the
ungauged theory. In other words, there is a well-defined Lagrangian even for such gaugings
whose gauge group is not among the global symmetries of the ungauged Lagrangian. The
existence of these gaugings is intimately related to the appearance of magnetic forms in



the action. This construction has been worked out in 4 dimensions [f§, ] where the rele-
vant duality is electric/magnetic duality for vector fields and in 2 dimensions [[] where it
amounts to the scalar-scalar duality which is at the heart of the integrable structure of the
ungauged theory.

In this paper we consider the maximal D = 6 supergravity and its possible gaugings.
The ungauged maximal supergravity in six dimensions has been constructed in [[[]] and
possesses a global E5x) = SO(5,5) symmetry. Only a GL(5) subgroup is realized off-
shell with the 5 two-forms B,, transforming in its fundamental representation. Together
with their magnetic duals B™ in the 5 they combine into the vector representation 10 of
SO(5,5). Little is known about the gaugings of this theory. Cowdall [[I]] obtained an SO(5)
gauge theory from circle reduction of the SO(5) gauged maximal supergravity in 7D [[J].
Alternatively, this theory describes the S* reduction of the IIA theory and proves to be
relevant in a non-conformal extension of the AdS/CFT correspondence [[[3]. However, as it
has only the SL(5) symmetry inherited from 7D manifest, the 6D result is in an exceedingly
complicated form that does not shed much light onto the maximal duality symmetry. Here
we fill this gap by providing all possible gaugings by a direct construction in 6. The
embedding tensor © which covariantly parametrizes the possible deformations transforms
in the 144, spinorial representation of SO(5,5). The gauged Lagrangian features the full
set of 10 two-forms as well as a set of three-forms in the 16, which are on-shell dual to
the vector fields of the theory. We should stress that our formalism differs from other
approaches introducing p-form fields together with their duals in that the relevant first
order duality equations here arise as true equations of motion from the Lagrangian. This
appears only possible in the gauged theory.

The plan of this paper is the following. In section f] we review the building blocks
of maximal D = 6 supergravity. In particular, we discuss the role of the SO(5,5) dual-
ity group under which electric and magnetic two-forms undergo an orthogonal rotation
and their consistent coupling is provided by the formalism of Gaillard and Zumino [[[4].
We review in detail the structure of the scalar fields which parametrize the coset space
SO(5,5)/(SO(5) x SO(5)). Finally, we give Tanii’s Lagrangian of the ungauged theory.
In section | we turn to the gauging of the theory. Applying the general framework, the
gauging is parametrized by the embedding tensor O transforming in the 144, of SO(5,5).
We derive the quadratic constraints on this tensor whose solutions correspond to viable
gaugings of the six-dimensional theory and work out the deformed tensor hierarchy up
to and including the three-forms. We present the Lagrangian of maximal gauged D = 6
supergravity which for a general gauging carries the set of 10 electric and magnetic two-
forms Bj; = (B, B™) of which the latter couple only with a topological term © C dB
to the set of three-forms C'4 in the 16,. Finally, we give a short overview and discussion
of various types of possible gaugings, i.e. solutions of the quadratic constraint and discuss
their possible higher-dimensional origin by dimensional reduction from seven and eleven
dimensions, respectively. Furthermore, we discuss the truncation to N = (1,1) theories.
Our notations and conventions are given in appendix A, and some identities, useful in
deriving the topological Lagrangian and computing its variation, are given in appendix B.



2. The Ingredients of the maximal D = 6 supergravity

2.1 The field content

The N = (2,2) supersymmetric maximal supergravity in six dimensions has been con-
structed by Tanii [I(]. It is an ungauged theory in which the couplings are governed,
along with supersymmetry, by the duality symmetry group SO(5,5) that rotate the field
equations and Bianchi identities of the five 2-form potentials into each other. Only the
subgroup GL(5) € SO(5,5) is a manifest off-shell symmetry of the theory. There is also a
manifest composite local symmetry SO(5) x SO(5).

The bosonic fields of the theory are the vielbein e),, 2-form potentials Buym(m =
1,...,5), vector fields Af}(A =1,...,16) and scalars V§¥(a, & = 1,...,4) that parametrize
the coset SO(5,5)/(SO(5) x SO(5)). The index A labels the 16 dimensional Majorana-Weyl
spinor of SO(5,5), and the indices «, & label the spinors of SO(5) x SO(5). The spinor fields
are the gravitini ¥4 0, ¥—ua and X4aas X—aa, Where a,a =1,...,5 are the SO(5) x SO(5)
vector indices, and =+ refers to the spacetime chirality of the spinors which are symplectic-
Majorana-Weyl. (See appendix A for further notations and conventions). In summary, the
full supergravity multiplet consists of the fields:

(e:“ B/wma Aﬁa Vada w-i-uom 1/1—,@, X+acs X—da) . (2'1)

As we gauge this theory in the most general possible way, we will introduce the following
duals of the vector fields and the 2-form potentials:

( Buw™, Cuvpa ) - (2.2)

Note that the vectors are in 16, and the 3-form potentials in 164 of the duality group
SO(5,5). Electric and magnetic two-forms B,,, and B™ transform in the 5 and 5 of GL(5),
respectively, and combine into the 10 of SO(5,5).

From E4q, it has been predicted that one can extend the field content of D = 6 maximal
gauged supergravity by the introduction of further 4,5 and 6-forms [, [Lq]:

4 5 6 [§
(Ciine Citar Clixp Ciwranrs ) (2.3)

where Cyyn is antisymmetric, Cyr4 is y-traceless, Cyrn,p is mixed symmetric, CyrvpPQRr+
is self-dual, and thus in 45, 1444, 320 + 10 and 1264 dimensional representations of
SO(5,5), respectively. The 4-form potentials have constraints on their curvatures such
that on-shell they describe 25 independent degrees of freedom corresponding to the Hodge
duals of the scalar fields in the coset SO(5,5)/SO(5) x SO(5). We will see that the 5-forms
are in the same representation as the embedding tensor and that the quadratic constraints
of the embedding tensor precisely transform in the representations dual to the 6-forms
given in ([2.3) [[q-[9. These 5-forms and 6-forms can easily be included in the D = 6
Lagrangian, where the constant embedding tensor has been replaced by a scalar field, as
Lagrange multipliers giving rise to the constancy of the embedding tensor and the quadratic
constraints, respectively [[7-[[9]. We will not explicitly perform this construction in this
paper. Recently, D = 5 maximal gauged supergravity has been constructed using the



embedding tensor approach and its relation with an FEjj-extended spacetime has been
investigated [2(]. It would be interesting to further study the proposed relationship for the
six-dimensional case studied in this paper.

2.2 Duality symmetry

To appreciate the duality symmetries in Tanii’s Lagrangian and also to set our notation,
we begin by reviewing the part of the Lagrangian involving the 2-form potential. Let us
define the field strengths

HOY = 4B, , égg) = —316—18(%(0) . (2.4)
Hy,

The Hodge-dual of a 3-form w is defined as @,,, = %eewmm w7, The field equations
dG(mO) = 0 and the Bianchi identities dH,gL)) = 0 form a system invariant under linear
transformations, which are restricted to SO(5,5) by the requirement that the equation for
Gm) is covariant under these transformations. Infinitesimally, these transformations act as

(0
HO > (H(O) > 0 o
0 2 =u 2 , uW'n+unp=0, n=1\ n o |- (2.5)

< o) o) o 0

Gaillard and Zumino have shown that the appropriate Lagrangian that achieves the duality
symmetry is given by [[4]*

1 ~ 1
- _ = o) m - (0) gm (0)ym .
L 0 ety G 12¢ [Hm S"™+ G Rm] + Liny (2.6)
where (R, S™), which is a pair that transforms under SO(5, 5) as in (R.5), and Liyy, which

m m

is duality invariant, are built out of fields other than (Hr(,?), G(o))v and jG(O) is given by
JGGy = S™+ K™ (HY) — jRy) . (2.7)

The operation j acting on a given 3-form w is defined by

1 A

=0, P Gy = et ™) 23
and the matrix K™ to be built out of the scalar fields must be of the form
K™ = K"™P, + K™P_ (K)'=K_, Py= %(1 +4), (2.9)
or equivalently
K™ = K" 4 jKy™, K{ =K;, KI=-K,. (2.10)

Under the infinitesimal SO(5,5) duality transformations,

u:(ji) : (2.11)

IFor a very nice review, see [ﬂ]



K must transforms as
0K = —-Kz+tK + zj — KyKj, (2.12)

as required by the covariance of the second equation in (R.4). For the 5 x 5 matrices K
this gives

5K+ = —K+$ -+ tK+ + 2z — K+yK+ 5
K. =—-K x+tK_—z+ K _yK_ . (2.13)

Substituting (R-7) into the Lagrangian (B.f) gives

L = g (HY — R K™ (H — R, ~

1
H(O)_. m) -7 m * -1 inv -
15 Hm (Hy,)—jRpy) - S 12]R S"t+e L

(2.14)

2.3 Gauge symmetry

So far the construction is rather general, and as far as duality symmetry is concerned the
result above provides the answer. In the particular model we wish to study, however, we
need to consider the gauge symmetries and supersymmetry as well. To this end, we need
to introduce the Chern-Simons modified 3-form field strengths, and their duality invariant
Pauli couplings to fermionic bilinears. To achieve this, the pair (R,,, S™) is chosen as

iRy = —wy + O, jS™ =-w"+ 0", (2.15)
where the Chern-Simons forms are given by

1 = 1 =
W = —=FAymA, W =-—FAy"A, 2.16
and we have used the 16 x 16 chirally projected SO(5,5) Dirac matrices var = (Ym,7™),
and (O,,, O™) are bilinears in fermions, to be determined by supersymmetry, multiplied
by suitable functions of the scalar fields so that they transform as (R,,, S™) under SO(5,5)
transformations. Thus, the Lagrangian takes the form

1p - L gemn - Lamo L5, ,m

1 1
o Hm - (K0 = jO™) = £5.0m - (K™"0, = jO™)
1
—l—E (wm . ]Om + W™ ]Om) + e_lﬁinvy (217)
where
Hp=HOY 4w, . (2.18)

Given the gauge transformations

1 -
6By, = ———= Fym\,  0A=d\, 2.19
N (2.19)

we see that all but the wQO terms are invariant, since

FAyuFAFyYMAX=0, (2.20)



which holds, thanks to the well known identity

naB Ve =0 - (2.21)

As to the wO terms, while they are not gauge invariant, they are nonetheless duality
invariant. Therefore, we can discard them by choosing L, to contain these terms with
opposite sign. Then, we are left with

1 1 1

1 mn . m - m
== __H * H _H * - T .

e L 12 1m K n gm Jw 12wm Jw

1 1
o - (K™ 0n = jO™) = 5O - (K™ O = jO™) + € Ly -

(2.22)

The Lagrangian is then determined completely by specifying K™", the pair of 3-forms
(O, O™) and L. Defining a following dual field strength, in analogy with (.13),

mv*

G = G+ W™, (2.23)
it follows from (2.7) that
G™ = K™ H, + O? terms . (2.24)

In the supergravity model we shall study, % represents quartic fermion terms. Working
up to quartic fermion terms in the action, which we shall do in the rest of the paper, it
is convenient to define field strengths G s that transform as 10-plet of the duality group

SO(5,5) as
Gn\ [ Hn

Using this definition, the Lagrangian (R.29) can be written as

1 1 1
o W . mn - Camo L aom
e L= 12Hm K™H, + 6Hm Jw 12wm Jjw

+% Gy - OM e L] (2.26)

mv >’

where O™ = (O™, 0,,,) and we have dropped O? terms that are quartic in fermions. With
O representing fermionic bilinears, the jG - O term describes already duality invariant Pauli
couplings.

Next, we discuss the matrix K™" which is to be expressed in terms of the scalar fields,
following [I(]. Here we shall choose a convenient basis for the scalar fields to make the
GL(5) € SO(5,5) symmetry manifest at the Lagrangian level. To this end, we introduce

the 10 x 10 matrix
Vo V8 A B
A m m _
e = . = 2.2
v (Vma Vma) (CD) ( 7)

where a, a are the vector indices of SO(5) x SO(5). Tanii has expressed his results in a basis
in which H,(S) + G?a) transform into each other under SO(5,5) as components of 10-vector,

and used a matrix U that obeys the relation

U NdiagU = Nding,  Ndiag = diag (1, 1), (2.28)



and therefore it is an SO(5, 5) representation. However, in this basis, the GL(5) symmetry
is not manifest. This can be remedied by working in a basis in which ( G"OL ) transform
as a vector under SO(5,5). To achieve this, we work with the matrix V of (R.27) which is
related to the group element U as

1 (11
V= MU, M:$<1_1>. (2.29)

Since MTngiangM = 1 with 1) defined as in (B.§), the matrix V satisfies the relation
VIV = ndiag , (2.30)

where 7 is as given in (R.5), and ngiag explicitly by

Sap 0
= 2.31
NAB < 0 5@[_) ) ( )

From (R.30), it also follows that

VMaVMb — 6ab, VM[lVMB — _5[157 VMGVM[I — 07
VYN — Dy VN = §iy (2.32)
It is important to note that in our conventions, the explicitly written (a,a) indices are
always raised and lowered with +8,, and +,;, starting from the basic object (2.27). This
explains the occurrence of minus signs in the formulae above where the form of n4p has
been used.

Our choice of the scalar matrix V makes both the GL(5) acting from the left, and
SO(5) x SO(5) acting from the right manifest in the formalism. Note that, given V, the
group h = SO(5); x SO(5);s acts from the right diagonally in the form h = diag (hy, hyy).
The condition (R.30) translates into

ATc+ctAa=1, B'D+D'B=-1, A'D+C'B=0. (2.33)

With this parametrization, the matrix K™ can be chosen as?
K=CA™'P, - DB 'P_. (2.34)

Using (£-33), one finds that (CA™1)T = —DB~! Tt can be easily checked that this K
indeed transforms under SO(5,5) as in (R.19). Written in terms of V, we have

K™ =ymay,a~ip, —ymiy, a=ip (2.35)
which gives the useful relations
K7™, =p.yme  K™),0 = —p_ymt (2.36)

with K defined in (R.9).

2We are grateful to Yoshiaki Tanii for helpful discussions regarding this point.



2.4 Supersymmetry

The choice for O is dictated by supersymmetry. Tanii has found that the following choices
are appropriate [L(]

1 o
Oum = —= (Vu*P_O" + V" PLO%Y) | 2.37
M ﬁ(M M PLO%) (2.37)

with the exact form of the fermionic bilinears (O, 0;) determined by supersymmetry
(see next section). Moreover, the description of the supersymmetric transformation rules
requires the quantities H* and H® defined by

Hy=V2 (V" PLH® — V" P_H?) . (2.38)

Recalling (2.39) and (R-39), we find that?

1 1
— P, GyVM, P H,=-—P.GyV¥. 2.39
\/E +Gm VY, \/i M ( )

Employing the relations (R.:35) and (R.39) also shows that

P_|_Ha:

PGV =0, PGuwWM=0. (2.40)

A

Using the quantities defined so far, the Lagrangian (.2() can be written as
—1 1 mn 1 a a a a
¢ L =~ Hn K Hn+6(P+H-O +P_H®- 0%
1 1
+6 Hy, -jw™ — T3Wm g™ el (2.41)

In showing the cancelations of the terms proportional to 1, H 2 terms coming from the
variation of the metric in the H-kinetic terms, it is useful to note that

1 mn — — 14
5£kin(H) = _ZeKl (H;j_m : Hlj_n + Hum : Hun) 5.9” ) (242)
where H* = Py H, and we have used the identity

_ 1 _
K" Hy Hop + (1= v) = 390 KT Hy, - Hy (2.43)

where we have used K{""V4 V! = £5%°, which follows from (R.10), (2.39) and (£.34). We
are also using the notation H,, - H, = H,,,H,*°, and H* - H~ = H/}, ,H~"". Finally,
upon using (R.3§) and (2.39) one finds that

1 o
0Lin(H) = — e (H* - H* + H, - H.") 5g" . (2.44)

These terms are then canceled by terms arising from the variation of the Pauli couplings

in (R.41)).

3The indices (a,a) on H, O and V are raised and lowered by 8,5 and 04




2.5 The scalars

The 25 scalar field of the theory parametrize the coset SO(5,5)/(SO(5) x SO(5)) which can
conveniently be parametrized in terms of an SO(5, 5) valued 16 x 16 matrix V4*?, with its
inverse defined by

VatlVE =68, VAP VA s = 625l (2.45)
The 10 x 10 scalar matrix V defined in (2:27) can be expressed in terms of the above 16 x 16
matrices V as* (see appendix A for notations and conventions).
1 _ . 1 _ .
Vi = 1—6V’7M’VQV, Vi = —1—6V’7M’7aV . (2.46)

These relations follow from the fact that the SO(5,5) y-matrices (obeying Clifford algebra
with non-diagonal 1y ) are left invariant by SO(5,5) transformations realized in terms of
V and V. Noting that (see appendix A)

VAT, = 0 VMt
a VMa,.Ya _ VMa,Ya 0 !

the invariance of the SO(5,5) -matrices translates into the relations

(2.47)

Vaaa () BV = Vi (v)aP85 + V(762
Vb (i) aVE? = Vi (7205 — Vi (v*)a"65 (2.48)
from which (R.46) follows.

The scalar currents are defined as [@]

VAo V4% = Q0 ()00 + QI 820 + TP 6P . (249
It follows that
Pl = VAV, Q= VeV, Qi = yte v, (250)
and 1 .
D,V = 1 Py vV (2.51)
Moreover, we have the standard integrability conditions
Dy Pt =0, 9,Q8 + Q. Qu™ + 4PC;7P =0, (2.52)

and a similar equation for the curl of sz. The covariant derivatives in the above expressions
contain the composite connections. Other useful identities are:

a 1 aa a a 1 aa a
DuVn® = 5 B Vu®, DyVu® = 5 Bl Vu® . (2.53)
It is also useful to introduce the matrix
Map = Vs VBag (2.54)

which will be used in the construction of kinetic term for the vector fields.

*“Working with V related to SO(5,5) matrices U through V = MU implies that the SO(5,5) v matrices
obey the Clifford algebra with off diagonal nasn.

— 10 —



2.6 The Lagrangian

Using the building blocks describe above, Tanii’s Lagrangian [L(], can be written in our
notation and conventions (see appendix A) as follows:

where
1 o 1 1 mn 1 A puvB 1 paa H
1 1
g Hm - jw™ = gwm - g™ (2.56)

and, up to quartic fermions,’

~ 1- 1- 1 1. .
e Lp = =5 Doty = SV Dutpop = SXDux® = X DX

1 1 1 s i
+ 3P Ly — 5 Fw I3+ (PLH®- 0%+ PLH™-O") (2.57)

The fermionic bilinears occurring in (2.57) have been determined by Tanii as follows

I8 = "y x4ty Y
_ 1_
J;wA = wpfy[p’}//u/ya} VAwU + §¢p’}’uufyp’yaVAxa

1. . 1 _. .
—gx“v”wuVM“sz + §x“ww“VA7“x“ ,

_ _ 1 .
0% = 30y o) — 3V Vg X — bemupvaxb : (2.58)

and O% is obtained from O% by interchanging dotted and undotted indices.
The Lagrangian () is invariant under the following supersymmetry transformations:

T

dey" = e hp ey,

1 1
Ot = Dues = 57 Hgu "1 s + 5 (0" = 65377) FpVae-,
| R 1 -
othy— = Dye_ — ﬂHZM’y“fyp‘m’yue_ + 3 (7u? — 66,’17”) FJ{}VA €+,

) 1 . 1 .. 1 :
5Xa — _Puaa,ya,yue + _Hayp,y/u/pe + _FA VA’}/a’}/wje,

4 12# 8 M
5Xa _ lpad’}/d’}/ue—l—iHG ’}/MV’DE%—EFAVA’}/G’}/‘LWE

4+ 127 #vP 4 ’

- 1 1 . .
0AY = —eVAh + BV e+ Sann VA + ox VA e,
— 1 = . 1_.
ABym = \/§ng <1/1[;/YV}’Y“6 + §Xa'7/u/€> - \/§ng <¢[M’YV}’YG€ + §Xar;we> )

1

0Va = 5 (vaVara) (Xavae + Xavae) , (2.59)

®We have corrected the coefficient of the P,I* term in @]

— 11 —



where AB,,, is the gauge covariant variation defined in appendix B,

1 1
D,e =0 e+ Zw,fsfyme + ZQM“b’yabe, (2.60)

and “ ~ 7 denotes transposition. The chiralities are shown explicitly only when there is an
ambiguity. Otherwise, when suppressed, they can easily be deduced from the structure of
the terms (see appendix A for notation and conventions).

3. Gauging Go C SO(5,5)

Using the embedding tensor formalism [I]-f], we will find the most general gauging of a
group Gy C SO(5,5) by employing a suitable combination of the 16 vector fields in the
theory.

3.1 The embedding tensor
The key ingredient in the construction is the covariant derivative
Dy =9y — gA A 04M Yty (3.1)

with SO(5,5) generators tyy = t[p/n) and an embedding tensor © AMN Tt follows from su-
persymmetry [B] that the latter can be parametrized in terms of a tensor %M transforming
in the 144, representation, i.e. satisfying

Yarap 0P =0, (3.2)
as follows:

OMN = —GB[MVN]BA = <7[M9N])A ) (3.3)

In this paper, we show that indeed every embedding tensor in the 144, (which also satisfies
the quadratic constraints (B.]) below) defines a consistent gauging, and present the full
Lagrangian.

The SO(5, 5) algebra is realized by generators tyn k= Ank| M5J](,] in the vector rep-

resentation and sy, AB = (YymnN) AB on the spinor representation, respectively, satisfying
[txr,tmN] = 4 Mkt — Mo tNk) - (3.4)

Therefore, the gauge algebra generators X4 = 04Nty take the form
Xag® = (MM a(vun) S Xau™ =20vm0™)a + 27V 0n1) 4 s (3:5)

acting on spinors and vectors, respectively. The quadratic constraints on the embedding
tensor state that

(X4, Xp] = —Xa5“ Xc . (3.6)
Some computation shows that this reduces to imposing

QAM QBN nun =0, HAM HB[N (’YP})AB =0, (37)
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on the tensor M. This means that the quadratic constraints transform in the 10 +
126, + 320 of SO(5,5) — and thus in the representation conjugate to the 6-forms of the
theory (R.3). They ensure, for example, that

M X ,5¢ = 0. (3.8)

The generators X 45° satisfy

S

Xap)~ = Y pa () s = = () ap0M = duap 29N, (3.9)

where we have introduced the general notation
dvas = (y)ag,  Z9M =M. (3.10)

As we have discussed in the introduction, gauging the theory in general not only cor-
responds to covariantizing the derivatives according to (B.1)) but also induces a nontrivial
deformation of the hierarchy of p-form tensor gauge transformations. In particular, p-forms
start to transform by (Stiickelberg)-shift under the gauge transformations of the (p+1)-
forms. The corresponding tensors required to intertwine between the representations of p-
and (p+1)-forms are generated by the embedding tensor. The lowest intertwining tensors
can be obtained by evaluating the general formulas of [fJ] for our case, yielding

ZC’,M = HCM
Vara™ = =208 (49) ganup 65 + 2057 (v9) pang 65 — 205N (var)a
= 2085 e (V) ag (3.11)

for the tensors intertwining between vectors/2-forms and 2-/3-forms, respectively. In
particular, the latter tensor encodes the representation content of 3-forms, required for
consistency of the deformed tensor gauge algebra. As the 3-forms (with the generic
index structure C,,,, ~4) will always appear under projection Yu, AN Cuvp ~*, the par-
ticular form of (B.11)) shows that out of this general set only the 16 projected 3-forms
(™)
discussed in the introduction, in particular with the fact that as a consequence of their

AB Cuup NA = wp B enter the theory. This is in accordance with the field content

on-shell duality, 3-forms should transform in the representation conjugate to the vector

fields. With (B.11]), the p-form tensor gauge algebra in six dimensions can now be written

down by evaluating the general formulas of [[f] (see in particular [, appendix A).
General p-form variations are most conveniently expressed in terms of the “covariant

variations”

AAL = 6A,7 (3.12)
ABWJM = 5B,uuM — \/5(’7M)AB A[MA 5AV]B s
ACuwpa = 6Cupa — 3V2 (VM) 4B Bl nr 645 — 200 a(var) e AP ALC 6A,P

SNote that B and = have been rescaled by a factor of v/2, and 6 by a minus sign, w.r.t. the formulae
provided in [@]
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The full non-abelian gauge transformations are then given by”
A A AM —
AAN = DA + V290 2,y
AB/J,VM = 2D[MEV}M - \/5 ('YM)AB AA ny + \/59 HAN TIMN <I>,uz/A ’
ACupa = 3D Pypa+ 3V2 (’YM)AB Hﬁw Zom Tt V2 (’YM)AB AB Huwprr » (3.13)
with gauge parameters A4, ZuM, P 4, and the covariant field strengths
Hﬁu =2 O[MA,,]A + QX[Bc]A A“BA,,C — \/igeAM B,
1
Huwprm = 3D, By, + 3v2 (Yamr)aB A[HA (8,,AP}B + ggX[CD]BAVCAP]D>
- \/59914]\[ NMN C,uupA s
H/u/p)\A = 4D[ucup)\] AT (/VM)AB (6\/§BHVMHpB)\ + 6geBNB[/u/MBp)\]N

+8(ar)ep AP AT 9, AR + 2(7M)CFXDEFA[“BA,,CAPDAME) . (3.14)

Under arbitrary variations these field strengths transform as

5 M, = 2Dy, (AAYY) = V290 AB
OHuwpm = 3D[H(ABup]M) +3V2 (Yam)aB H{}w AAP}B — \/ég gAN NMN AC'WJPA .
3

Hypr a = 4D AC, x4 — A7) ap (ﬁ HE AByur — V2 H[WPMAAMB> . (3.15)

One of the consequences of the gauge covariantization a la (B.1)) is the modification of the
scalar currents as

aa aa I a.a a a 1= a
Pu - Pu = ZV’Y Y ’DMV, Qub — Qub = gV’Y b’DMV, (316)

and similarly for Quai’, with the gauge covariant derivative given by
D,V =D,V — g(AMON) yunV . (3.17)
This leads to the following modified integrability equations:
Dy Py + 49F55 Tai =0,
ab 1 aa ab e rpab
Q;w + 57)[” V] + 4gf,uy Tha =0,
Qi + 5Pl Pu ™ + dgF ) Tog =0, (3.18)
where QI — 28[NQ3§’ +29},%Q,.” and

f“,,A =2 O[HA,,}A + gX[BC]A AuBA,,C
=2 a[MA,,}A + g(’yMNA[M)AHM’yNAV} , (3.19)

" As usual in even dimensions there is a subtlety with the gauge transformation law of the D /2-forms @, E]
requiring that eventually in the off-shell formulation of gauge transformations, M., in the last line

of ) is replaced by Guvp i from ()7 below.
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and
1

Tt = 3 (VaayaOn) (VA% NV
1, _
T = =5 (Vaa0n) (V’y“b'YMN V) ,
P 1 o
Toh = 55 (VaamnOn) (VW“IWMN V) : (3.20)

These expressions can be simplified and their group theoretical meaning can be made more

transparent by making use of (2:4§) and recalling that v,,6" = 0. As a result, we find
Tab — ,Y[a Tb] 7 Tab — —T[a"}/b] 7 TG — _i(vaTa + Ta,ya) 7
YT + Ty =0, (3.21)
where we have defined the T-tensors,
T =V 0 My, T = vyt etMyy (3.22)

Thus, T4 = (T°,T%) is in one-to-one correspondence with the embedding tensor 6. For
later purposes, it is convenient to also define

T =T = —T%"% . (3.23)
The quadratic constraints (B.4) translate into

a qa _ pa ma. _ Cad , [A B|A8 _
Ths 86 TMTM—O, T fYad,ﬁBT =0, (3.24)

where ¥4 = (y* x 1,1 x 4%). Restricting to SO(5); x SO(5);; directions, several identities
result from the latter equation. For example, restriction to the SO(5); direction, upon the
use of (A), gives
. 1 . 1 -
(T — Ztr(TaTb) =% tr(T9T°A) . (3.25)
We recall that “ ~ 7 denotes transposition. The nontrivial content of this equation is the
antisymmetric part in its free SO(5) indices, namely,

tr(TeyleT?y = 0, (3.26)

while the symmetric projection, contains no new information, in view of (A.§). A useful
identity needed in establishing the supersymmetry of the Lagrangian is obtained by evalu-
ating the antisymmetric part of 77T, Using the trace of the constraint equation B.23),
and recalling ([A.§), we obtain

ATT® + TTH* = ATT® — tr TT* — 21T + tr TT . (

Next, we observe that the constraint (B.24) enables us to covariantize the identities (B.18
D Py — 4gH i, tr T*Va = 0, (

(

1. 5
Qb + 5P il — AgH, TV, = 0 .

— 15—



Further useful relations are furnished by the derivatives of the T-tensors, which take the

form
DT — ipzb (,YbTa,YB B 25abTB) 7
DT — ipzb <7bTa715 _ 25@6Tb) ,
DT = % e <—7“Td + T — %7“T7d> : (3.30)

The quantities P and Q can conveniently be written as

Pai = Pt 4 8g At tr TV, (3.31)
Qb = QU +4g At tr TV (3.32)

and similarly for me. Finally, the modified Bianchi identities are

V2

D[Hpr} = _? geAMH;pr, (333)
3 - 1
D[uHupcr]M = ﬁ H[uu’YMHpo} - Wi geﬁHuupaA . (334)

3.2 The gauged maximal D = 6 supergravity

The building blocks we have just described can now be used to gauge the maximal D=6
supergravity. Thus, we introduce the magnetic potentials B/j, and the 3-form potentials
Clwpa accordingly, and in the ungauged Lagrangian we make the replacements

Hyvom = Myvom s Hjpy —HL,, P — Pl (3.35)

as well as gauge covariantize the derivatives by the prescription
Dy—Dy, QY- Q-9 (3.36)

in the supersymmetry transformation rule, and the Lagrangian with the exception of the
topological terms. They are modified by the requirement of all the gauge symmetries de-
scribed in the previous section. This turns out to be highly constraining nontrivial require-
ment which remarkably fixes the topological terms entirely, as will be described in detail in
the next section. These modifications will introduce new, gauge coupling constant g depen-
dent supersymmetry variations due to the explicitly g-dependent terms in (B.2§), (B.3]),
B.37) and (B.34). To cancel them, as usual, we parametrize the most general fermionic

mass terms that are linear in the T-tensors, and a potential that is quadratic in the T-
tensors, and introduce linear in the T-tensor terms in the supersymmetry variations of the
fermions. As for the supersymmetry transformations of the newly introduced higher rank
p-forms, that of By, is straightforward by simply requiring that together with By, they
form a 10-plet of SO(5,5). Regarding the 3-form potential C),,4 wWe simply parameterize
its supersymmetry transformation rules in a fashion dictated by gauge symmetries and di-
mensional analysis. Requiring that all the g-dependent variations cancel, we determine all
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the coefficients used in parameterizing the Lagrangian and supersymmetry transformation
rules. The subtle features that arise in these computations are to a large extent parallel
to those encountered in the construction of the gauged maximal supergravities in D=4 [§].
We will spell out some more details of the salient features in this computation but first, let
us present our results.

We have found that the Lagrangian £ = Lp + Lp, up to quartic fermion terms, is

given by
-1 1 1 mn A vB
e Lp= —R——sz'K Hy — MABH S HM
- 1 -
-1 67?;1“7?“ <tr T - TT> +e Wiop (3.37)

where Ly is the topological part of the Lagrangian given in the next section, and

~ 1. 1. 1 1. .
e 'Lp = ——1/1+ iV Dytpyp = 56V Dutpop — SX Y Dpx” — 5X* Dux”
1 o
_|_ ’P‘m I[,tha _ 27_(;:&,/ Jﬂl/ 6 (P+Ha ol + P_HE - Oa)
+gzb+w” To—y + 29 (V" TOX" + T y"4py,)
1. _
+59 (X“TY* Y — by y*TX)

. . 1 .
+9x° <2’y“T“ = 21" + 59T ’Y“) X" (3.38)

where the fermionic bilinears are as given in (R.5§).
The supersymmetry transformations are

T

dey" = 4V Y ey,

1 . 1 1

51/1#4‘ = Dl/«6+ — ﬂHpO'H’Y ’Yp Y€+ + = 3 ( 6(5” )H Vae_ + 4g’YuT6_ s
1 1 ~ 1 ~

(51/}u_ = DME_ — —Hao.ﬁ’}’ ’YPJK’YM + = 8 ( 6(5'/ ) prVA €+ — Zg ’YuTE—i- s

ot = 77““ ~He + HWp’pre + ZH,’:‘VVA’ya’yW €+ 29 T% + %g TH%,
ox* = P““ vHe + HWPW’WPE + %Hﬁu‘?A’ya’tu e+ 29T% — %g TH%,
SAL = —eViy, + wuv €+ %awavf‘x“ - %)ZdVAvdv“e,
ABm = V2V (¥ < WYY e+ ;x v,m) V2Vi (¥ < Y Ye+ ;x 'mue> ,
ACpupn = 3 (Vatuuthy — TytnVae) + 5 (¥ VarueX® + XVar e
SVa = = (Y"Var®) (X% + x*v%) . (3.39)

We emphasize again that the + chiralities have been shown explicitly only when necessary,
and when suppressed they can be deduced from the structure of the terms. We also note
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that H,upa and H,pe are defined by

Him = V2 (V" PyH* = Vi, " P_HY) | (3.40)

where we have suppressed the tensorial indices. This is analogous to the relation (R.3§) in
the ungauged model. Similarly, we can define the analog of the field strength (2.29) as

Om \ _ Hum
Gu = (Qm) = (ij"Hn) : (3.41)

As in (£:39), it follows that

1 1
PiH,=—=P GyV¥ P Hy=—-——PGyvM. 3.42

Thus, the supersymmetry transformations, as well as the Pauli couplings involving G, are
manifestly duality-covariant. The supersymmetry algebra is expected to close on-shell with
field dependent composition symmetry parameters, as usual. Normally, the fermionic field
equations are needed for the closure, but here, the closure on the three-form potential
requires its field equation as well. In the next section, we will show that this field equation
takes the simple form 4™ (G — Hyy) = 0.

We conclude this section by expressing the potential explicitly in terms of the embed-
ding tensor and the coset representatives, and observe that it takes the remarkably simple

form

1 _
V(e) =5 06PNV v <VA7b7“VB> . (3.43)

3.3 The topological term

In establishing the gauge and supersymmetry of the action a highly complicated topological
term is needed. The full topological term is given by

1 ~ ~ 3 -
£top = %e—leuupm@)\ [ - HmCHVP (977100’{)\ + \/EHO'H)\m> - ﬁ HM’VNHPBHVMBPUNB“)‘P

+18(0mY™ ApBy Bpom + Omyna A0y Boo™) Bia™ + 184,760 A,7™0N By rs Boxn
18Au7M0m (A,,VNHm — 2[1,,7""”91\7) BoomBorn — QﬁauﬁyymﬁpAgBmm

_18\/5 (éM’YmAu - ém’YMAu) aVAp’YmAU BnAM - 3\/5 Au’YmXupaaBn)\m

+6\/§ éM'YNA,L; apAolyNA)\ B,uuM - % Au’VNchr AV'VNHM Biam

_6\/5 A/fmeup (AU’YMem - AU’YmHM) BnAM + 9Au7mauApAU’YmanA)\

12 - - _ _ 1
+€A}L7MXVP AoyMﬁnA)\ - 647" X, (Aoym&{A)\ - EAC,me,.@)\> ] , (3.44)
where the gauge coupling constant g is suppressed and
XMVA = A[u’yMHN(A,,}’yMN)A . (345)

The topological Lagrangian Ly, is completely fixed by requiring gauge invariance of Liop -+
Lyin. In fact, the topological term can already completely be determined just starting from
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its leading term 9;,41 Clvp A 05 B\ and completing the term by requiring invariance under
tensor gauge transformations deLiop = 0 = 6=Liop. Subsequently, one can show that its
general variation takes the fully covariant form (B.48) below, which is a strong consistency
check. Useful identities needed for these computations are provided in appendix B.

Note that the mass term for the three forms 62 §5™ is automatically antisymmetric
due to the quadratic constraint. Moreover, no such term would exist with full SO(5,5)
covariance, i.e. it is essential here that the Lagrangian exhibits only GL(5) covariance.
Also the cubic B3 coupling 6M~V@F is automatically symmetric in (M NP) due to the
quadratic constraint (B.7). Finally, note that also the A% term could not exist in an
SO(5,5) covariant Lagrangian: there is no SO(5,5) singlet in the tensor product of ©2AS.
Again it is essential that SO(5,5) is broken to GL(5).

In the ungauged theory (64" = 0) the topological term (B.44)) is simply

L= %fwmdA A (dBm + %AymdA> , (3.46)

and contained in (R.5§). For electric gaugings (6A = 0) the topological term reduces to:

m

1 3 _
Liop = %e—lewm [ -5 ™" 07 By Boon By + 188"v™ A0, Byom Bron

+184,7m0" A y™0P B pon Brrp — IV2 0, Ay ™) Ay Brrm
—18V2 0" Au8, Ay™ Ay Buxn — 3V2 A, X p05 Brm

_ _ 1-
+6\/§ Hm'VNA,u (AI/VNapAo - ZAV’VNchr> Bixm
+6\/§AufmeupAJ’Ym6nBﬁ)\n + 9Au7maVApAJ’YmanA)\

12 - - - - 1-
+EAMVMXup AU’VMOEA)\ - 6Au7mXup <Ao’7manA)\ - EAU'VmX/i)\> ] ) (3'47)

and one sees explicitly that in this case neither 3-forms C),, 4 nor magnetic two-forms
B, enter this Lagrangian. For the B3 term we have used here that émVPH" = 0 for
electric gaugings as a consequence of the quadratic constraint.

We find that the complete variation of the topological term is given by

1 _
e Y Liop = 37 e L e PTA AYMH o (ABa i) (3.48)

—%me -D(AB™) — % giH™ - (0,,AC) — %me (HA™ AA),
and thus expressible in a very compact form in terms of the covariant variations A defined
above. In the ungauged theory, only the first and the last term of this variation are present,
while the second term becomes a total derivative. Note that the variation (B.4§) is only
GL(5) invariant. This forbids for example in the gauged theory to integrate by parts the
second term, as the sum over m is not the full SO(5, 5) covariant one whereas the derivative

D, is covariant with respect to a gauge group that might not be contained in GL(5). Only
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together with the variation of the kinetic term
1
e ' 0Liin(A, B) = —H" 4 Map <Du(AA,,B) -7 g0"M ABuuM) (3.49)
1 _ _
— Hm K™ <3D(ABn) +3V2 Ty AA — V20, AC) |

the two non-covariant terms join and the combined variation takes the form

% 90" ABy )
—%e_l PN AMH by (AByox 11)

—%ng - DABM — % JGu - (HYM AA)

_% gi(Har — Gar) - (BMAC) . (3.50)

Since there is no kinetic term for the 3-form potential C4, its bosonic field equation is given
by

e (6Liin(A, B) + Liop) = —H™ A Mg (DM(AAVB) -

goa (H™ — jK™H,) =0, (3.51)

where we have used (B-4]). As for the bosonic field equation of the “magnetic” 2-form
potentials, it takes the form

s <HW, A+ %eemeABH“B> =0, (3.52)
where we have used the Bianchi identity (-34). This equation, as expected, furnishes the
duality relation between the three-form potentials and the vector fields.

The variation formula (B.5() is also very useful in finding the gauge coupling con-
stant dependent terms in the action and supersymmetry transformation rules that are
needed for establishing supersymmetry. The supersymmetry variations, with undifferenti-
ated supersymmetry parameter, that do not depend on the gauge coupling constant will
be covariantizations of those which arise in the ungauged Lagrangian. Therefore, they will
cancel as in the ungauged theory, and in a covariantized form. Supersymmetric variations
with overall explicit coupling constant dependence, on the other hand, cancel as follows:

1. The partial integration in the Gy - DABM term yields 9H,wpo A Via the modified
Bianchi identity (B.34). This is canceled by a term arising in the variation of the
gravitino in the Pauli coupling term G - O, followed by partial integration, and use of

the Bianchi identity ([3:34).

2. The terms involving gH* coming from the H - AB term in (B.5() and the new varia-
tions of the Pauli term JH, are canceled by the terms coming from the old variations
in the fermionic mass terms, in gravitino kinetic term and the Noether term P, I*,

using (B-29) and (B.29).
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3. The terms involving gH s coming from the Hys - AC term in (B.5(), cancel the terms
coming from the variation in the Pauli term JH using the modified Bianchi identity
(B:33). In fact, this is a convenient way to determine the supersymmetric variation
of C'y.

4. The terms involving gGys coming from the Gps- AC term in (B.5(), the new variations
of the Pauli coupling term G - O and the old variations of the g-dependent fermionic
mass terms, all cancel.

5. Finally, the new variations of the fermionic mass terms and the old variations of the
potential, all cancel.

3.4 Classification of gaugings under GL(5)

So far, we have shown that every tensor 84 in the 144, of SO(5,5) which satisfies the
quadratic constraint ([.7) defines a consistent and maximally supersymmetric gauging in
six dimensions. It remains to study the possible solutions of (B.7) and to identify the
resulting theories. As usual, a systematic way to scan the various possibilities is given

9AM ynder a given subgroup of SO(5,5) and to separately analyze the

by decomposing
different irreducible parts. In six dimensions, a distinguished subgroup is the maximal
GL(5) € SO(5,5) which allows to identify a possible seven-dimensional origin of the theories
— with SL(5) corresponding to the seven-dimensional duality group — as well as a possible
origin in eleven dimensions, in which context GL(5) is associated to the five-torus on which
the reduction is performed.

Under GL(5), the SO(5,5) representations break as
10 -5 4572, 16, -1 5 +5 4107, 16, -1 +53 +10" | (3.53)
where we denote the B,,, by 5 and the B™ by 5. The adjoint breaks as
45 —1°+24° L 10™ 1107 (3.54)

The 1°+249 is the GL(5) subgroup, the 10** generators are realized as shift symmetries on
the scalar fields. They correspond to the off-diagonal block z in (R.11)) and thus correspond
to off-shell symmetries of the Lagrangian. The complete off-shell symmetry group is thus
given by GL(5) x 1074, The 10'~* generators on the other hand are hidden symmetries
that correspond to the off-diagonal block y in (P.11)) and are realized only on-shell, i.e.
do not constitute symmetries of the action. We expect that there is a dual Lagrangian in
which the 107 and 10'~* generators have exchanged their roles.

Next, we turn to the classification of gaugings under GL(5). Under GL(5), the embed-
ding tensor 144, decomposes as

144, — 5™ 4577 1107 4157 42477 4407 4453 (3.55)

Splitting #4M = (94, 9A) this amounts to distinguishing between electric and magnetic
gaugings: gaugings triggered by 4™ only involve the electric two-forms B,, and no three-
forms. This can be seen explicitly in the tensor gauge transformations (B.13), the covariant
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field strengths (B.14) and the topological term (B.47). On the other hand, gaugings triggered
by 07 involve magnetic two-forms B™ as well as additional three-form tensor fields. In
terms of representations, these components can contain

0Am =53 1107 42470 4407, 02 =5 45T 1107 4157 4453 (3.56)

Comparing this to (B:59), we see, that 2475 +40'~! and 577 + 1571 + 45’3 trigger purely
electric and purely magnetic gaugings, respectively, whereas 5’73 4+ 10~ correspond to
gaugings involving simultaneously electric and magnetic two-forms. Recall the quadratic
constraint

OAM AN v =0, 0AMeBIN (4P p = 0. (3.57)

The first equation is automatically satisfied for gaugings that are purely electric or purely
magnetic. For these we have to impose only the second equation, which is a 320 under
SO(5,5) and thus

320 — 572 4572 44070 44070 44572 + 45" T2 1 7072 470/ 72, (3.58)

This shows that e.g. any 6 in the 2477 (since its square does not show up in (B.53))
defines a consistent (electric) gauging. In fact, this makes sense: these are the Scherk-
Schwarz gaugings obtained by reduction from seven dimension, the 24=° corresponds to
choosing a generator in the seven-dimensional symmetry group SL(5). The 40'~! on the
other hand also defines purely electric gaugings, but these #’s need to satisfy an additional
quadratic constraint in the 70'~2 of (B.5§). These are the theories obtained by torus
reduction from gaugings in seven dimensions, where indeed (part of) the embedding tensor
lives in the 40’ and its quadratic constraint in the 70’ [R3J]. Explicitly, for @ given by
gk — glmnlk with glmnkl — 0 the quadratic constraint is

PTG € = 0. (3.59)

Purely magnetic gaugings described by the 577 also satisfy automatically the quadratic
constraint (B.58). They may correspond to reductions from eleven dimensions with non-
trivial four-form flux. Also for magnetic gaugings described by the 157!, the square of 6
does not show up in (B.5), thus these are automatically consistent theories. They come
from torus reduction of seven-dimensional CSO(p, ¢, ) gaugings [[4, RJ], whose embedding
tensor indeed transforms in the 15. And it makes perfect sense that these give magnetic
gaugings: in order to gauge CSO(p, ¢, ) in seven dimensions, a number of two-forms have
been dualized into three-forms, whose reduction to six dimensions gives rise to the magnetic
dual two-forms. A more constrained version of magnetic gaugings is parametrized by the
45'+3 (explicitly: some traceless 9™ = 19Lmn]) with a quadratic constraint in the 4076,
given by

9 9P =0. (3.60)

[s Cklmnpg

Note the duality of this constraint to (8.59). As 9" has the index structure of a torsion,
these theories could presumably be obtained by reduction from eleven dimensions on some
twisted tori.
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O MN 1004 10 240 10+4
53 517 5/+3 (5" +45/)*3 (10 + 40"t
10 | (5 +45)T 1071 (10415 +40")71 2475
115 1071 245

Table 1: The top row represents the SO(5, 5) generators, the left column represents the vector fields
and we have depicted their mutual couplings by the various GL(5) components of the embedding
tensor according to (@)

The gaugings triggered by 572 and 107! (let us parametrize them by 9™ and an
antisymmetric Uyn = Uy, Tespectively) are neither purely electric nor purely magnetic,
i.e. the first equation of (B.-57) has to be imposed explicitly. However, it follows immediately
that they give rise to only few constraints. While apparently they cannot be switched on
together, ¥ alone defines a consistent gauging, and ,,,,) comes with the constraint

D10 € = 0, (3.61)

which is solved by ¥, = Apn&y), which is a possible candidate to be the most general
solution.

Of course, there are many more gaugings possible which correspond to simultaneously
switching on various GL(5) irreducible components of 6.

The nature of these gaugings is illustrated by table[[. In accordance with the discussion
above, we see that electric gaugings (those triggered by the 247> + 40'~!) involve only
generators that belong to the off-shell symmetry group GL(5) x 1074 of the Lagrangian.
Magnetic gaugings in the 577 4 45’73 on the other hand also gauge symmetries that are
realized only on-shell, very much like what happens in other even dimensions. A notable
exception are gaugings triggered by the 157!, these are magnetic in the sense that they
require introduction of magnetic two-forms and three-form fields, on the other hand they
only gauge on-shell symmetries inside of GL(5)! This is rather different from the situation
in four dimensions, where every gauging whose gauge group resides within the off-shell
symmetry group of the Lagrangian can be realized as a purely electric gauging, i.e. without
introduction of magnetic forms [f]. Note however that due to the first quadratic constraint
in (B.7) there is always a frame, which may be reached by an O(5,5) rotation from Tanii’s
Lagrangian, in which the gauging takes a purely electric form. However, this may not be
the frame the most suited in order to identify a particular higher dimensional origin.

3.5 Classification of gaugings under SO(4,4) and truncation to N = (1, 1) theories

It would be interesting to consider truncations of our results to D = 6 half-maximal gauged
supergravity. The duality group of non-chiral D = 6 half-maximal gauged supergravity cou-
pled to 4 + n vector multiplets is given by R* x SO(4,4 + n). There are three different
classes of gaugings [17]. The gauging of the RT scaling symmetry leads to an embedding
tensor in the fundamental representation of the duality group. On the other hand, the
gauging of a subgroup of the SO(4, 4+ n)-factor leads to an embedding tensor in the three-
index antisymmetric representation. On top of this there is also a massive supergravity
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O MN 8,2 10 280 82
8t | 8Ft +5611 871t 87t 4+56.t 8.3
8! 813 8t 8fl 4561 871 +56 "

Table 2: The top row and the left column represent the SO(5,5) generators and the vector fields
of the maximal theory, respectively, and we have depicted their mutual couplings by the various
SO(4,4) components of the embedding tensor according to (B.1]).

HAM 1—2 89) 1+2
8Ft |83 8ft 4561t 81

8;1 | 8Ft 8 t+s6 7t 873

Table 3: The branching of the matrix §4M

with an embedding tensor in the fundamental representation. This includes the massive
supergravity of [RJ]. Gaugings of this theory coupled to further matter multiplets have
been constructed in [B4, P§]. The ITA origin of the n = 16 case via a K3 compactification
was studied in [2g]. A massive supergravity is a particular deformation of the p-form gauge
transformations that does not involve the gauging of a duality group. These massive super-
gravities are also described by the embedding tensor approach. The T-duality properties
of the D = 6 half-maximal massive supergravities have been discussed in [27, B§.

Let us see, how these structures can be embedded into our results. The duality group
of the half-maximal supergravity coupled to 4 vector multiplets embedded in the maximal
theory is R™ x SO(4,4) under which the SO(5,5) representations break according to

10 -89 +172 4172, 16, — 8 +871,
45 — 10 4289 4812 1872, (3.62)

In particular, the embedding tensor breaks according to
144, — 561 + 567 4871 + 871 + 813 4873 (3.63)

and we may analyze the gaugings triggered by the different SO(4, 4) irreducible parts. The
three different classes discussed above correspond to the gaugings induced by the 8!, the
56! and the 833, respectively. Again we can infer the structure of these gauge couplings
from the table of minimal couplings, see table fJ. The structure of the deformed p-form
tensor hierarchy can be illustrated by explicitly branching the matrix 4™ see table B,
which plays the role of the intertwiner between vectors/2-forms and 2-/3-forms, respec-
tively, cf. (B.14). Truncation to the half-maximal theory coupled to 4 vector multiplets
corresponds to projecting out the 87! vector fields and the 82 two-forms, in the bosonic
sector. Next, we describe the two classes of gaugings of this theory triggered by the 833
and 8;1.

Let us first consider the gaugings induced by the 813. As its square does not appear in
the decomposition of the quadratic constraint 10 + 126, + 320, a gauging induced by such
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an embedding tensor ¥ is automatically consistent. According to table [, it gauges the
8, shift symmetries, while table [] shows that it induces a Stiickelberg type coupling of the
form F,,*+9°B,,,. Alternatively, we may consider the gaugings induced by the component
8.1 gaugings induced by the component 8! which we shall denote by 9. As the quadratic
constraint contains a 1-2, we deduce that 9 should be a null vector (9%, = 0). This
defines another class of viable gaugings. According to table [, these in particular gauge the
R* shift symmetry. Note however, that 813 and 8. ! cannot be switched on simultaneously,
but lead to a quadratic constraint of the form 9#(®9%) = 0. This is in line with the occurrence
of corresponding 6-form potentials in the same representations [B,E]

The 4 vector multiplets in these theories can be consistently truncated to obtain the
pure half-maximal theory RJ]. It is well known that there exists an SU(2) gauged ver-
sion of this theory with an additional massive deformation parameter. The SU(2) gauge
group is the non-chiral diagonal subgroup of the SU(2) x SU(2) isomorphism group of the
N = (1,1) Poincaré superalgebra. It is interesting to determine if and how this theory can
be embedded in the gauged maximal theory. To this end, considering the gaugings induced
by the 813 discussed above, upon a consistent truncation to the pure half-maximal theory,
the shift symmetries and the associated vector fields 85 are projected out and what remains
is precisely Romans’ massive deformation. In this theory, the only effect of the gauging
in the bosonic sector is the Stiickelberg type coupling and the scalar potential, the mass
parameter m corresponding to a fixed component within 9. Thus, we are able to show
how Romans’ massive deformation of the pure half-maximal theory can be embedded into
the maximal theory where it is a true gauging of shift isometries.

We can show that the SU(2) gauging with mass parameter set to zero follows from
a suitable truncation as well. In fact, there exists a variant of Romans’ theory [9,
emerging in a generalized Kaluza-Klein reduction of D=11 supergravity on K3 x R, with
all 4 vectors abelian, which should also be embeddable in gauged maximal supergravities.
However, it remains an open question if Romans’ theory with non-vanishing gauge coupling
constant and mass deformation parameter can be embedded in the maximal theory. In
general, the lower supersymmetric 6D supergravities admit more general couplings than
those which can be obtained by truncation of the maximal theory since the quadratic
constraints encountered in gauging of the maximal theory are far more stringent than what
is required in gauging of the lower supersymmetric theories. In fact, a very simple example
of this phenomenon arises in seeking a truncation of Romans’ theory to an N = (1,0)
supergravity that maintains any gauging at all. One quickly finds that this is not possible,
and indeed this is the case for the variant of the Romans’ theory as well. On the other hand,
a U(1) gauged N = (1,0) supergravity does exist in its own right, and it is constructed
directly in the N = (1,0) supersymmetric setting [BI], BJ].

In conclusion, it would be highly interesting to see, which gaugings of the half-maximal
theory, or indeed minimal theory, with or without matter couplings, can be lifted to the
maximal gaugings and which of their solutions may be embedded. We leave these and
related questions for future work.
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A. Notations and conventions

In our conventions:

{/77“773} = 2nps, Nrs = diag(—, +, +,+.+, +)
{Févrﬁ} = 27714ti NAB :diag(+7+7+v+7+a_7_7_7_7_)7 (Al)

where A = (a,a). Moreover, Y, s = €r..r677 and (v7)2 = 1. A convenient representation
for I'y is
Fa:1><’ya><0'1, Pd:fydxlxz'ag, (AQ)

with

{’Yau’}/b} = 260,67 5ab = dia‘g(+7+7+7+7+)7
{/7(1776} = 25[1('77 5{, = diag(+7+7+7+7+)7 (A3)

a

From the position where they are used, it can be seen that the matrix y* is either (7)o or
(va)adﬁﬁ = (%) 5@, depending on what it acts on, and similarly for v%. The indices (a, @)
on the y-matrices are raised and lowered with d,, and ¢.;. We use the chirally projected
SO(5,1) Dirac matrices, such that v, are symmetric and v, are antisymmetric. Similarly,
we use the chirally projected SO(5,5) Dirac matrices and all (anti) symmetrizations are
with unit strength. Note that there is no need to raise and lower the spinor indices in this
chiral notation. The USp(4) indices are raised and lowered by the symplectic invariant
tensors as: X = QaﬁXg, X, = XﬁQﬁa with QagQﬁ'Y = —04. The symmetry properties of
the v and I" matrices are as follows:

YuC : symmetric , YurpC' : antisymmetric
(Ya)ap : antisymmetric , (Yab)ag : symmetric
(VM YMy-ms)AB © Symmetric, (YmMNP)AB : antisymmetric (A.4)

The SO(5) y-matrices satisfy the identity

(1)’ (v*),° = 25;;55 + 20,07 — 5§5§ . (A.5)
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Note also that any A,z = —Aga, and any S,3 = S, can be expanded as

1 1
A= ZtrA + Z’y“tr 7*A, (A.6)
1
S = —gyabtryabS . (A.7)
The matrices V(‘;‘d and Vaoa(A=1,...,16, a,&=1,...,4) can be treated as sixteen 4 x 4

matrices V4 and V4. The index A is a chiral SO(5,5) spinor index which is never raised
and lowered but the a and & indices can be raised and lowered as usual.

Whenever the row and column indices of a matrix are suppressed we will always assume
that the indices are in the order (M),*, with the exception of the chirally projected SO(5,1)
Dirac matrices v, and again chirally projected SO(5,5) matrices M in which case they
are both up or down. Thus, for example,

DYx = (e Xp, 1 Vax = ()’ (Va)s x5,

VMV = VA 4pVad . VamwV = VO (un)a®Via - (A-8)
Furthermore, V always denotes VA%, Finally, our conventions for differential forms are
as follows:

1
w=— dz”* N dx™? wy,. 0, , dz"' A - da?e = —e terr o By (A.9)
p!

B. Useful identities

Proving invariance of the topological term (B.44) under tensor gauge transformations and

showing that its variation takes the fully covariant form (B.4§) is quite lengthy and re-
quires a number of rather non-trivial identities which combine SO(5,5) properties with the
constraints on the embedding tensor #4M. Among the SO(5, 5) identities are

0="vvasB 'VMCD) )

0 = vx 4™ )5 — 1K BT pya + vk VNV E A + 4 4N pyp - (B)

The following identity holds upon antisymmetrization in indices [ABC]:
0 = vk apvL 8rY e + 29k apvL BEY e + VM 4y PR CD - (B2)
Another SO(5,5) identity (upon antisymmetrization in indices [ABCD]) is given by:

0 = 107k apv™ By M op + 87 M 4py® gy 9k cp + 107 apvk BEY M E o

— 107k a7 BFYOME op — 479 arv BEYTME 0D 4 49K arYT BEYOM K 0D
+ 207k apve BEY B o — 2k BRI Ay DM op
- 2’YPNKAE’YQLN BF’YMKL CD — ’YKN[PEF’YNKL AB’YQ]MLCD . (B-3)

We derive this identity by first observing that there must be a relation between this number
of terms with this symmetry structure in the free indices, as a consequence of represen-
tation theory. We then compute the coeflicients either by tracing or by using an explicit
representation.
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Now we multiply this identity with 6’505 and use the tracelessness Y™ 4 Hﬁ = 0,
upon which this identity reduces to

0= 656g (?WKAEVKBFVPQMCD + 29" 4y 5k op — 6Y° AR BEY M E oD
+ 1"k aeve srYM ep + vk ERY A o > _ (B.4)

Finally we may use the quadratic constraint on 6 and obtain

Q Q

xcp — 69 apvr sry M5 ep ) ;
(B.5)

0= 0595 <3’7KAE’7KBF'7P MCD + 2’7MAE'7KBF'7P

a quite strong identity (upon antisymmetrization in indices [ABCD]), which enters the
calculation of the variation of the topological term.
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